A Manual for Armed Bear Common Lisp

Mark Evenson, Erik Huelsmann, Alessio Stalla, Ville Voutilainen

October 21, 2011

Chapter 1

Introduction

Armed Bear is a (mostly) conforming implementation of the ANSI Common Lisp standard. This
manual documents the Armed Bear Common Lisp implementation for users of the system.

1.0.1 Version
This manual corresponds to abcl-1.0.0, released on October 22, 2011.

1.0.2 License

The implementation is licensed under the terms of the GPL v2 of June 1991 with the “classpath-
exception” that makes its deployment in commercial settings quite reasonable. The license is
viral in the sense that if you change the implementation, and redistribute those changes, you are
required to provide the source to those changes back to be merged with the public trunk.

1.0.3 Contributors

Philipp Marek
Douglas Miles
Alan Ruttenberg
and of course
Peter Graves

CHAPTER 1. INTRODUCTION

Chapter 2

Running

ABCL is packaged as a single jar file usually named either “abcl.jar” or possibly “abcl-1.0.0.jar”
if one is using a versioned package from your system vendor. This byte archive can be executed
under the control of a suitable JVM by using the “-jar” option to parse the manifest, and select
the named class (org.armedbear.lisp.Main) for execution, viz:

cmd$ java —jar abcl.jar

N.b. for the proceeding command to work, the “java” executable needs to be in your path.

To make it easier to facilitate the use of ABCL in tool chains (such as SLIME !) the invocation
is wrapped in a Bourne shell script under UNIX or a DOS command script under Windows so
that ABCL may be executed simply as:

cmd$ abcel

2.1 Options
ABCL supports the following command line options:

--help

Displays this message.
--noinform

Suppresses the printing of startup information and banner.
--noinit

Suppresses the loading of the ’~/.abclrc’ startup file.
—-nosystem

Suppresses loading the ’system.lisp’ customization file.
--eval <FORM>

Evaluates the <FORM> before initializing REPL.
--load <FILE>

Loads the file <FILE> before initializing REPL.
--load-system-file <FILE>

Loads the system file <FILE> before initializing REPL.
--batch

The process evaluates forms specified by arguments and possibly by those

by those in the intialization file ’~/.abcl’, and then exits.

The occurance of ’--’ copies the remaining arguments, unprocessed, into
the variable EXTENSIONS:*COMMAND-LINE-ARGUMENT-LISTx*.

ISLIME is the Superior Lisp Mode for Interaction under Emacs

6 CHAPTER 2. RUNNING

”

All of the command line arguments which follow the occurrence of “—-" are passed into a list

bound to the EXT:*COMMAND-LINE-ARGUMENT-LIST* variable.

2.2 Initialization

If the ABCL process is started without the “—noinit” flag, it attempts to load a file named “.abclrc”
located in the user’s home directory and then interpret its contents.

The user’s home directory is determined by the value of the JVM system property “user.home”.
This value may—or may not—correspond to the value of the HOME system environment variable
at the discretion of the JVM implementation that ABCL finds itself hosted upon.

Chapter 3

Conformance

3.1 ANSI Common Lisp

ABCL is currently a (non)-conforming ANSI Common Lisp implementation due to the following
known issues:

e The generic function signatures of the DOCUMENTATION symbol do not match the CLHS.

e The TIME form does not return a proper VALUES environment to its caller.

Somewhat confusingly, this statement of non-conformance in the accompanying user documen-
tation fullfills the requirements that ABCL is a conforming ANSI Common Lisp implementation
according to the CLHS . Clarifications to this point are solicited.

ABCL aims to be be a fully conforming ANSI Common Lisp implementation. Any other
behavior should be reported as a bug.

3.2 Contemporary Common Lisp

In addition to ANSI conformance, ABCL strives to implement features expected of a contemporary
Common Lisp 2

3.2.1 Deficiencies
The following known problems detract from ABCL being a proper contemporary Comon Lisp.
e An incomplete implementation of a properly named metaobject protocol (viz. (A)MOP 3)

e Incomplete streams abstraction, in that ABCL needs suitable abstraction between ANSI
and Gray streams. The streams could be optimized to the JVM NIO abstractions at great
profit for binary byte-level manipulations.

e Incomplete documentation (missing docstrings from exported symbols.

1Common Lisp Hyperspec language reference document.
2j.e. a Lisp of the post 2005 Renaissance
3 Another Metaobject Protocol

CHAPTER 3. CONFORMANCE

Chapter 4

Interaction with Hosting JVM

The Armed Bear Common Lisp implementation is hosted on a Java Virtual Machine. This chapter
describes the mechanisms by which the implementation interacts with that hosting mechanism.

4.1 Lisp to Java

ABCL offers a number of mechanisms to interact with Java from its Lisp environment. It allows
calling both instance and static methods of Java objects, manipulation of instance and static fields
on Java objects, and construction of new Java objects.

When calling Java routines, some values will automatically be converted by the FFI ! from
Lisp values to Java values. These conversions typically apply to strings, integers and floats. Other
values need to be converted to their Java equivalents by the programmer before calling the Java
object method. Java values returned to Lisp are also generally converted back to their Lisp
counterparts. Some operators make an exception to this rule and do not perform any conversion;
those are the “raw” counterparts of certain FFI functions and are recognizable by their name
ending with -RAW .

4.1.1 Low-level Java API

We define a higher level Java API in the ??(JSS package) which is available in the contrib/ ?7?
directory. This package is described later in this document. This section covers the lower level
API directly available after evaluating (require ’JAVA) .

Calling Java Object Methods

There are two ways to call a Java object method in the low-level (basic) API:
e Call a specific method reference (which was previously acquired)

e Dynamic dispatch using the method name and the call-specific arguments provided by finding
the ??best match.

The dynamic dispatch variant is discussed in the next section.

JAVA:JMETHOD is used to acquire a specific method reference. The function takes at two or
more arguments. The first is Java class designator (a JAVA:JAVA-CLASS object returned by
JAVA:JCLASS or a string naming a Java class). The second is a string naming the method.

Any arguments beyond the first two should be strings naming Java classes with one exception
as listed in the next paragraph. These classes specify the types of the arguments for the method
to be returned.

1FFI stands for Foreign Function Interface which is the term of art which describes how a Lisp implementation
encapsulates invocation in other languages.

10 CHAPTER 4. INTERACTION WITH HOSTING JVM

There’s additional calling convention to the JAVA:JMETHOD function: When the method is
called with three parameters and the last parameter is an integer, the first method by that name
and matching number of parameters is returned.

Once one has a reference to the method, one may invoke it using JAVA:JCALL , which takes
the method as the first argument. The second argument is the object instance to call the method
on, or NIL in case of a static method. Any remaining parameters are used as the remaining
arguments for the call.

Calling Java object methods: dynamic dispatch

The second way of calling Java object methods is by using dynamic dispatch. In this case
JAVA:JCALL is used directly without acquiring a method reference first. In this case, the first
argument provided to JAVA:JCALL is a string naming the method to be called. The second
argument is the instance on which the method should be called and any further arguments are
used to select the best matching method and dispatch the call.

Dynamic dispatch: Caveats

Dynamic dispatch is performed by using the Java reflection API 2. Generally the dispatch works
fine, but there are corner cases where the API does not correctly reflect all the details involved in
calling a Java method. An example is the following Java code:

ZipFile jar = new ZipFile(”/path/to/some.jar”);

Object els = jar.entries ();

Method method = els.getClass ().getMethod (”hasMoreElements”);
method . invoke (els);

even though the method hasMoreElements() is public in Enumeration , the above code fails
with

java.lang.IllegalAccessException: Class ... can
not access a member of class java.util.zip.ZipFile\$2 with modifiers
”public”
at sun.reflect.Reflection.ensureMemberAccess(Reflection.java:65)
at java.lang.reflect .Method.invoke (Method.java:583)
at

because the method has been overridden by a non-public class and the reflection API, unlike
javac, is not able to handle such a case.

While code like that is uncommon in Java, it is typical of ABCL’s FFI calls. The code above
corresponds to the following Lisp code:

(let ((jar (jnew ”java.util.zip.ZipFile” ”/path/to/some.jar”)))
(let ((els (jcall ”entries” jar)))
(jcall ”"hasMoreElements” els)))

except that the dynamic dispatch part is not shown.

To avoid such pitfalls, all Java objects in ABCL carry an extra field representing the “intended
class” of the object. That is the class that is used first by JAVA:JCALL and similar to resolve
methods; the actual class of the object is only tried if the method is not found in the intended class.
Of course, the intended class is always a super-class of the actual class - in the worst case, they
coincide. The intended class is deduced by the return type of the method that originally returned
the Java object; in the case above, the intended class of ELS is java.util.Enumeration because
that’s the return type of the entries method.

While this strategy is generally effective, there are cases where the intended class becomes too
broad to be useful. The typical example is the extraction of an element from a collection, since

2The Java reflection API is found in the java.lang.reflect package

4.2. LISP FROM JAVA 11

methods in the collection API erase all types to Object . The user can always force a more
specific intended class by using the JAVA:JCOERCE operator.

Calling Java class static methods

Like with non-static methods, references to static methods can be acquired by using the JAVA: JMETHOD
primitive. In order to call this method, it’s not possible to use the JAVA:JCALL primitive how-
ever: there’s a separate API to retrieve a reference to static methods. This primitive is called
JAVA:JSTATIC .

Like JAVA:JCALL , JAVA:JSTATIC supports dynamic dispatch by passing the name of the
method as a string instead of passing a method reference. The parameter values should be values
to pass in the function call instead of a specification of classes for each parameter.

Parameter matching for FFI dynamic dispatch

The algorithm used to resolve the best matching method given the name and the arguments’ types
is the same as described in the Java Language Specification. Any deviation should be reported as
a bug.

Instantiating Java objects

Java objects can be instantiated (created) from Lisp by calling a constructor from the class of
the object to be created. The same way JAVA:JMETHOD is used to acquire a method reference,
the JAVA:JCONSTRUCTOR primitive can be used to acquire a constructor reference. It’s arguments
specify the types of arguments of the constructor method the same way as with JAVA: JMETHOD .

The constructor can’t be passed to JAVA:JCALL , but instead should be passed as an argument
to JAVA:JNEW .

Accessing Java object fields

Fields in Java objects can be accessed using the getter and setter functions JAVA:GETFIELD and
JAVA:PUTFIELD . This applies to values stored in object instances. If you want to access static
fields: see the next section.

Like JAVA:JCALL and friends, values returned from these accessors carry an intended class
around and values which can be converted to Lisp values will be converted.

Accessing Java static fields

Static fields in Java objects (class fields) can be accessed using the getter and setter functions
JAVA:GETSTATIC and JAVA:PUTSTATIC . Values stored in object instance fields can be accessed
as described in the previous section.

Like JAVA:JCALL and friends, values returned from these accessors carry an intended class
around and values which can be converted to Lisp values will be converted.

4.2 Lisp from Java

In order to access the Lisp world from Java, one needs to be aware of a few things. The most
important ones are listed below.

e All Lisp values are descendants of LispObject.java
e In order to

e Lisp symbols are accessible via either directly referencing the Symbol.java instance or by
dynamically introspecting the corresponding Package.java instance.

12 CHAPTER 4. INTERACTION WITH HOSTING JVM

e The Lisp dynamic environment may be saved via LispThread.bindSpecial (Binding) and
restored via LispThread.resetSpecialBindings(Mark) .

e Functions may be executed by invocation of the Function.execute(args [...])

4.2.1 Lisp FFI

FFI stands for ”Foreign Function Interface” which is the phase which the contemporary Lisp
world refers to methods of ”calling out” from Lisp into ”foreign” languages and environments.
This document describes the various ways that one interacts with Lisp world of ABCL from Java,
considering the hosted Lisp as the ”Foreign Function” that needs to be ”Interfaced”.

4.2.2 Calling Lisp from Java

Note: As the entire ABCL Lisp system resides in the org.armedbear.lisp package the following
code snippets do not show the relevant import statements in the interest of brevity. An example
of the import statement would be

import org.armedbear.lisp .x;

to potentially import all the JVM symbol from the ‘org.armedbear.lisp’ namespace.
Per JVM, there can only ever be a single Lisp interpreter. This is started by calling the static
method ‘Interpreter.createlnstance()‘.

Interpreter interpreter = Interpreter.createlnstance ();

If this method has already been invoked in the lifetime of the current Java process it will return
null, so if you are writing Java whose life-cycle is a bit out of your control (like in a Java servlet),
a safer invocation pattern might be:

Interpreter interpreter = Interpreter.getInstance ();
if (interpreter =— null) {
interpreter = Interpreter.createlnstance ();

}

The Lisp eval primitive may be simply passed strings for evaluation, as follows

String line = ”(load.\” file.lisp\”)”;
LispObject result = interpreter.eval(line);

Notice that all possible return values from an arbitrary Lisp computation are collapsed into a
single return value. Doing useful further computation on the “LispObject” depends on knowing
what the result of the computation might be, usually involves some amount of instanceof
introspection, and forms a whole topic to itself (c.f. [Introspecting a LispObject])

Using eval involves the Lisp interpreter. Lisp functions may be directly invoked by Java
method calls as follows. One simply locates the package containing the symbol, then obtains a
reference to the symbol, and then invokes the execute() method with the desired parameters.

interpreter.eval (” (defun.foo.(msg).(format.nil_\"You.told _me.’"A’"%\” _.msg))”);
Package pkg = Packages.findPackage (”CL-USER”);
Symbol foo = pkg.findAccessibleSymbol ("FOO”);

Function fooFunction = (Function)foo.getSymbolFunction ();
JavaObject parameter = new JavaObject (” Lisp.is.fun!”);
LispObject result = fooFunction.execute (parameter);

// How to get the "naked string value”?
System.out.println ("The_result _was.” + result.writeToString ());

If one is calling an primitive function in the CL package the syntax becomes considerably
simpler. If we can locate the instance of definition in the ABCL Java source, we can invoke the
symbol directly. For instance, to tell if a ‘LispObject‘ contains a reference to a symbol.

4.2. LISP FROM JAVA 13

boolean nullp (LispObject object) {

LispObject result = Primitives .NULL. execute (object);

if (result = NIL) { // the symbol ’'NIL’ is explicitly named in the Java
// mnamespace at ‘‘Symbol.NIL’’
// but is always present in the
// local namespace in its unadorned form for
// the convenience of the User.

return false;

}

return true;

Introspecting a LispObject

We present various patterns for introspecting an an arbitrary ‘LispObject’ which can represent
the result of every Lisp evaluation into semantics that Java can meaningfully deal with.

LispObject as boolean

If the LispObject a generalized boolean values, one can use getBooleanValue() to convert to
Java:

LispObject object = Symbol.NIL;
boolean javaValue = object.getBooleanValue ();

Although since in Lisp, any value other than NIL means ”true” (so-called generalized Boolean),
the use of Java equality it quite a bit easier to type and more optimal in terms of information it
conveys to the compiler would be:

boolean javaValue = (object != Symbol.NIL);

LispObject is a list If LispObject is a list, it will have the type ‘Cons‘. One can then use the
copyToArray to make things a bit more suitable for Java iteration.

LispObject result = interpreter.eval(”’(1.2.4.5)");
if (result instanceof Cons) {
LispObject array[] = ((Cons)result.copyToArray ());

}

A more Lispy way to iterated down a list is to use the ‘cdr()‘ access function just as like one
would traverse a list in Lisp:;

LispObject result = interpreter.eval(”’(1.2.4.5)");
while (result != Symbol.NIL) {

doSomething (result.car ());

result = result.cdr ();

}

4.2.3 Java Scripting API (JSR-223)

ABCL can be built with support for JSR-223, which offers a language-agnostic API to invoke
other languages from Java. The binary distribution downloadable from ABCL’s common-lisp.net
home is built with JSR-~223 support. If you're building ABCL from source on a pre-1.6 JVM, you
need to have a JSR-223 implementation in your CLASSPATH (such as Apache Commons BSF

14 CHAPTER 4. INTERACTION WITH HOSTING JVM

3.x or greater) in order to build ABCL with JSR-223 support; otherwise, this feature will not be
built.

This section describes the design decisions behind the ABCL JSR-223 support. It is not
a description of what JSR-223 is or a tutorial on how to use it. See http://trac.common-
lisp.net/armedbear/browser/trunk /abcl/examples/jsr-223 for example usage.

Conversions

In general, ABCL’s implementation of the JSR-223 API performs implicit conversion from Java
objects to Lisp objects when invoking Lisp from Java, and the opposite when returning values
from Java to Lisp. This potentially reduces coupling between user code and ABCL. To avoid such
conversions, wrap the relevant objects in JavaObject instances.

Implemented JSR-223 interfaces

JSR-223 defines three main interfaces, of which two (Invocable and Compilable) are optional.
ABCL implements all the three interfaces - ScriptEngine and the two optional ones - almost
completely. While the JSR-223 API is not specific to a single scripting language, it was designed
with languages with a more or less Java-like object model in mind: languages such as Javascript,
Python, Ruby, which have a concept of "class” or "object” with "fields” and "methods”. Lisp
is a bit different, so certain adaptations were made, and in one case a method has been left
unimplemented since it does not map at all to Lisp.

The ScriptEngine

The main interface defined by JSR-223, javax.script.ScriptEngine, is implemented by the class
org.armedbear.lisp.scripting.AbclScriptEngine . AbclScriptEngine is a singleton, reflect-
ing the fact that ABCL is a singleton as well. You can obtain an instance of AbclScriptEngine using
the AbclScriptEngineFactory or by using the service provider mechanism through ScriptEngine-
Manager (refer to the javax.script documentation).

Startup and configuration file

At startup (i.e. when its constructor is invoked, as part of the static initialization phase of Ab-
clScriptEngineFactory) the ABCL script engine attempts to load an ”init file” from the classpath
(/abcl-script-config.lisp). If present, this file can be used to customize the behaviour of the engine,
by setting a number of variables in the ABCL-SCRIPT package. Here is a list of the available
variables:

e *use-throwing-debugger* Controls whether ABCL uses a non-standard debugging hook func-
tion to throw a Java exception instead of dropping into the debugger in case of unhandled
error conditions.

— Default value: T

— Rationale: it is more convenient for Java programmers using Lisp as a scripting language
to have it return exceptions to Java instead of handling them in the Lisp world.

— Known Issues: the non-standard debugger hook has been reported to misbehave in
certain circumstances, so consider disabling it if it doesn’t work for you.

e *launch-swank-at-startup* If true, Swank will be launched at startup. See *swank-dir* and
swank-port™.

— Default value: NIL

e *swank-dir* The directory where Swank is installed. Must be set if *launch-swank-at-
startup* is true.

4.2. LISP FROM JAVA 15

e *swank-port* The port where Swank will listen for connections. Must be set if *launch-
swank-at-startup* is true.

— Default value: 4005

Additionally, at startup the AbclScriptEngine will (require ’asdf) - in fact, it uses asdf to
load Swank.

Evaluation

Code is read and evaluated in the package ABCL-SCRIPT-USER. This packages USEs the COMMON-
LISP, JAVA and ABCL-SCRIPT packages. Future versions of the script engine might make this
default package configurable. The CL:LOAD function is used under the hood for evaluating code,
and thus the same behavior of LOAD is guaranteed. This allows, among other things, IN-PACKAGE
forms to change the package in which the loaded code is read.

It is possible to evaluate code in what JSR-223 calls a ”ScriptContext” (basically a flat en-
vironment of name-;jvalue pairs). This context is used to establish special bindings for all the
variables defined in it; since variable names are strings from Java’s point of view, they are first
interned using READ-FROM-STRING with, as usual, ABCL-SCRIPT-USER as the default pack-
age. Variables are declared special because CL’s LOAD , EVAL and COMPILE functions work in
a null lexical environment and would ignore non-special bindings.

Contrary to what the function LOAD does, evaluation of a series of forms returns the value of
the last form instead of T, so the evaluation of short scripts does the Right Thing,.

Compilation

AbclScriptEngine implements the javax.script.Compilable interface. Currently it only sup-
ports compilation using temporary files. Compiled code, returned as an instance of javax.script.CompiledScript,
is read, compiled and executed by default in the ABCL-SCRIPT-USER package, just like evalu-
ated code. Differently from evaluated code, though, due to the way the ABCL compiler works,
compiled code contains no reference to top-level self-evaluating objects (like numbers or strings).
Thus, when evaluated, a piece of compiled code will return the value of the last non-self-evaluating
form: for example the code ”(do-something) 42” will return 42 when interpreted, but will return
the result of (do-something) when compiled and later evaluated. To ensure consistency of behavior
between interpreted and compiled code, make sure the last form is always a compound form - at
least (identity some-literal-object). Note that this issue should not matter in real code, where it is
unlikely a top-level self-evaluating form will appear as the last form in a file (in fact, the Common
Lisp load function always returns T upon success; with JSR-223 this policy has been changed to
make evaluation of small code snippets work as intended).

Invocation of functions and methods

AbclScriptEngine implements the javax.script.Invocable interface, which allows to directly
call Lisp functions and methods, and to obtain Lisp implementations of Java interfaces. This is
only partially possible with Lisp since it has functions, but not methods - not in the traditional
0O sense, at least, since Lisp methods are not attached to objects but belong to generic functions.
Thus, the method invokeMethod() is not implemented and throws an UnsupportedOperationEx-
ception when called. The invokeFunction() method should be used to call both regular and
generic functions.

Implementation of Java interfaces in Lisp

ABCL can use the Java reflection-based proxy feature to implement Java interfaces in Lisp. It
has several built-in ways to implement an interface, and supports definition of new ones. The
JAVA: JMAKE-PROXY generic function is used to make such proxies. It has the following signature:

16 CHAPTER 4. INTERACTION WITH HOSTING JVM

jmake-proxy interface implementation &optional lisp-this ==> proxy

interface is a Java interface metaobject (e.g. obtained by invoking jclass) or a string
naming a Java interface. implementation is the object used to implement the interface - several
built-in methods of jmake-proxy exist for various types of implementations. lisp-this is an
object passed to the closures implementing the Lisp ”methods” of the interface, and defaults to
NIL .

The returned proxy is an instance of the interface, with methods implemented with Lisp
functions.

Built-in interface-implementation types include:

e a single Lisp function which upon invocation of any method in the interface will be passed
the method name, the Lisp-this object, and all the parameters. Useful for interfaces with a
single method, or to implement custom interface-implementation strategies.

e a hash-map of method-name -; Lisp function mappings. Function signature is (lisp-this
&rest args) .

e a Lisp package. The name of the Java method to invoke is first transformed in an idiomatic
Lisp name (javaMethodName becomes JAVA-METHOD-NAME) and a symbol with that name
is searched in the package. If it exists and is fbound, the corresponding function will be
called. Function signature is as the hash-table case.

This functionality is exposed by the AbclScriptEngine with the two methods getInterface(Class)
and getInterface(Object, Class). The former returns an interface implemented with the current
Lisp package, the latter allows the programmer to pass an interface-implementation object which
will in turn be passed to the jmake-proxy generic function.

Chapter 5

Implementation Dependent
Extensions

As outlined by the CLHS ANSI conformance guidelines, we document the extensions to the Armed
Bear Lisp implementation made accessible to the user by virtue of being an exported symbol in
the JAVA, THREADS, or EXTENSIONS packages.

5.1 JAVA

5.1.1 Modifying the JVM CLASSPATH

The JAVA:ADD-TO-CLASSPATH generic functions allows one to add the specified pathname or
list of pathnames to the current classpath used by ABCL, allowing the dynamic loading of JVM
objects:

CL—-USER> (add—to—classpath ”/path/to/some.jar”)

N.b add-to-classpath only affects the classloader used by ABCL (the value of the special
variable JAVA:*CLASSLOADER#* . It has no effect on Java code outside ABCL.

5.1.2 API

17

18 CHAPTER 5. IMPLEMENTATION DEPENDENT EXTENSIONS

%JGET-PROPERTY-VALUE

Function: Gets a JavaBeans property on JAVA-OBJECT.
#%JSET-PROPERTY-VALUE

Function: Sets a JavaBean property on JAVA-OBJECT.
JAVA-OBJECT-TO-STRING-LENGTHx

Variable: Length to truncate toString() PRINT-OBJECT output for an
otherwise unspecialized JAVA-OBJECT. Can be set to NIL to indicate
no limit.

+FALSE+

Variable: The JVM primitive value for boolean false.

+NULL+

Variable: The JVM null object reference.

+TRUE+
Variable: The JVM primitive value for boolean true.
ADD-TO-CLASSPATH
Generic Function: (not documented)
CHAIN
Macro: (not documented)
DESCRIBE-JAVA-OBJECT
Function: (not documented)
DUMP-CLASSPATH
Function: (not documented)
ENSURE-JAVA-CLASS
Function: (not documented)
ENSURE-JAVA-0BJECT
Function: Ensures 0BJ is wrapped in a JAVA-OBJECT, wrapping it if necessary.
GET-CURRENT-CLASSLOADER
Function: (not documented)
GET-DEFAULT-CLASSLOADER
Function: (not documented)
JARRAY-COMPONENT-TYPE
Function: Returns the component type of the array type ATYPE
JARRAY-LENGTH
Function: (not documented)
JARRAY-REF

Function: Dereferences the Java array JAVA-ARRAY using the given

INDICIES, coercing the result into a Lisp object, if possible.
JARRAY-REF-RAW
Function: Dereference the Java array JAVA-ARRAY using the given
INDICIES. Does not attempt to coerce the result into a Lisp object.
JARRAY-SET
Function: Stores NEW-VALUE at the given index in JAVA-ARRAY.
JAVA-CLASS
Class: (not documented)
JAVA-EXCEPTION
Class: (not documented)
JAVA-EXCEPTION-CAUSE
Function: (not documented)
JAVA-OBJECT
Class: (not documented)
JAVA-OBJECT-P
Function: Returns T if OBJECT is a JAVA-OBJECT.
JCALL
Function: Invokes the Java method METHOD-REF on INSTANCE with

5.1. JAVA

arguments ARGS, coercing the result into a Lisp object, if possible.
JCALL-RAW

Function: Invokes the Java method METHOD-REF on INSTANCE with
arguments ARGS. Does not attempt to coerce the result into a Lisp
object.
JCLASS

Function: Returns a reference to the Java class designated by
NAME-OR-CLASS-REF. If the CLASS-LOADER parameter is passed, the class
is resolved with respect to the given ClassLoader.
JCLASS-ARRAY-P

Function: Returns T if CLASS is an array class
JCLASS-CONSTRUCTORS

Function: Returns a vector of constructors for CLASS
JCLASS-FIELD

Function: Returns the field named FIELD-NAME of CLASS
JCLASS-FIELDS

Function: Returns a vector of all (or just the declared/public, if
DECLARED/PUBLIC is true) fields of CLASS
JCLASS-INTERFACE-P

Function: Returns T if CLASS is an interface
JCLASS-INTERFACES

Function: Returns the vector of interfaces of CLASS
JCLASS-METHODS

Function: Return a vector of all (or just the declared/public, if
DECLARED/PUBLIC is true) methods of CLASS
JCLASS-NAME

Function: (not documented)
JCLASS-O0F

Function: (not documented)
JCLASS-SUPERCLASS

Function: Returns the superclass of CLASS, or NIL if it hasn’t got one
JCLASS-SUPERCLASS-P

Function: Returns T if CLASS-1 is a superclass or interface of CLASS-2
JCOERCE

Function: Attempts to coerce OBJECT into a JavaObject of class
INTENDED-CLASS. Raises a TYPE-ERROR if no conversion is possible.
JCONSTRUCTOR

Function: Returns a reference to the Java constructor of CLASS-REF
with the given PARAMETER-CLASS-REFS.
JCONSTRUCTOR-PARAMS

Function: Returns a vector of parameter types (Java classes) for CONSTRUCTOR
JEQUAL

Function: Compares objl with obj2 using java.lang.Object.equals()
JFIELD

Function: Retrieves or modifies a field in a Java class or instance.
JFIELD-NAME

Function: Returns the name of FIELD as a Lisp string
JFIELD-RAW

Function: Retrieves or modifies a field in a Java class or instance. Does not
JFIELD-TYPE

Function: Returns the type (Java class) of FIELD
JINSTANCE-OF-P

Function: OBJ is an instance of CLASS (or one of its subclasses)
JINTERFACE-IMPLEMENTATION

20 CHAPTER 5. IMPLEMENTATION DEPENDENT EXTENSIONS

Function: Creates and returns an implementation of a Java interface with
JMAKE-INVOCATION-HANDLER

Function: (not documented)
JMAKE-PROXY

Generic Function: (not documented)
JMEMBER-PROTECTED-P

Function: MEMBER is a protected member of its declaring class
JMEMBER-PUBLIC-P

Function: MEMBER is a public member of its declaring class
JMEMBER-STATIC-P

Function: MEMBER is a static member of its declaring class
JMETHOD

Function: Returns a reference to the Java method METHOD-NAME of
CLASS-REF with the given PARAMETER-CLASS-REFS.
JMETHOD-LET

Macro: (not documented)
JMETHOD-NAME

Function: Returns the name of METHOD as a Lisp string
JMETHOD-PARAMS

Function: Returns a vector of parameter types (Java classes) for METHOD
JMETHOD-RETURN-TYPE

Function: Returns the result type (Java class) of the METHOD
JNEW

Function: Invokes the Java constructor CONSTRUCTOR with the arguments ARGS.
JNEW-ARRAY

Function: Creates a new Java array of type ELEMENT-TYPE, with the given DIMENSIONS.
JNEW-ARRAY-FROM-ARRAY

Function: Returns a new Java array with base type ELEMENT-TYPE (a string or a class-ref)
JNEW-ARRAY-FROM-LIST

Function: (not documented)
JNEW-RUNTIME-CLASS

Function: (not documented)
JNULL-REF-P

Function: Returns a non-NIL value when the JAVA-OBJECT ‘object‘ is ‘null‘,
JOBJECT-CLASS

Function: Returns the Java class that 0OBJ belongs to
JOBJECT-LISP-VALUE

Function: Attempts to coerce JAVA-OBJECT into a Lisp object.
JPROPERTY-VALUE

Function: (not documented)
JREDEFINE-METHOD

Function: (not documented)
JREGISTER-HANDLER

Function: (not documented)
JRESOLVE-METHOD

Function: Finds the most specific Java method METHOD-NAME on

INSTANCE applicable to arguments ARGS. Returns NIL if no suitable
method is found. The algorithm used for resolution is the same used

by JCALL when it is called with a string as the first parameter
(METHOD-REF) .
JRUN-EXCEPTION-PROTECTED

Function: Invokes the function CLOSURE and returns the result.

Signals an error if stack or heap exhaustion occurs.
JRUNTIME-CLASS-EXISTS-P

5.1. JAVA

Function: (not documented)
JSTATIC
Function: Invokes the static method METHOD on class CLASS with ARGS.
JSTATIC-RAW
Function: Invokes the static method METHOD on class CLASS with
ARGS. Does not attempt to coerce the arguments or result into a Lisp
object.
MAKE-CLASSLOADER
Function: (not documented)
MAKE-IMMEDIATE-OBJECT
Function: Attempts to coerce a given Lisp object into a java-object of the
REGISTER-JAVA-EXCEPTION
Function: Registers the Java Throwable named by the symbol
EXCEPTION-NAME as the condition designated by CONDITION-SYMBOL.
Returns T if successful, NIL if not.
UNREGISTER-JAVA-EXCEPTION
Function: Unregisters the Java Throwable EXCEPTION-NAME previously
registered by REGISTER-JAVA-EXCEPTION.

21

22 CHAPTER 5. IMPLEMENTATION DEPENDENT EXTENSIONS

5.2 THREADS

The extensions for handling multithreaded execution are collected in the THREADS package. Most
of the abstractions in Doug Lea’s excellent java.util.concurrent packages may be manipulated
directly via the JSS contrib to great effect.

5.2.1 API

5.2. THREADS 23

THREADS : CURRENT-THREAD
Function: (not documented)
THREADS : DESTROY-THREAD
Function: (not documented)
THREADS : GET-MUTEX
Function: Acquires a lock on the ‘mutex’.
THREADS : INTERRUPT-THREAD
Function: Interrupts THREAD and forces it to apply FUNCTION to ARGS.
THREADS :MAILBOX-EMPTY-P
Function: Returns non-NIL if the mailbox can be read from, NIL otherwise.
THREADS : MAILBOX-PEEK
Function: Returns two values. The second returns non-NIL when the mailbox
THREADS : MATLBOX-READ
Function: Blocks on the mailbox until an item is available for reading.
THREADS : MAILBOX-SEND
Function: Sends an item into the mailbox, notifying 1 waiter
THREADS : MAKE-MAILBOX
Function: (not documented)
THREADS : MAKE-MUTEX
Function: (not documented)
THREADS : MAKE-THREAD
Function: (not documented)
THREADS : MAKE-THREAD-LOCK
Function: Returns an object to be used with the ‘with-thread-lock’ macro.
THREADS : MAPCAR-THREADS
Function: (not documented)
THREADS : 0BJECT-NOTIFY
Function: (not documented)
THREADS : 0BJECT-NOTIFY-ALL
Function: (not documented)
THREADS : 0BJECT-WAIT
Function: (not documented)
THREADS : RELEASE-MUTEX
Function: Releases a lock on the ‘mutex’.
THREADS : SYNCHRONIZED-ON
Function: (not documented)
THREADS : THREAD
Class: (not documented)
THREADS : THREAD-ALIVE-P
Function: Boolean predicate whether THREAD is alive.
THREADS : THREAD-JOIN
Function: Waits for thread to finish.
THREADS : THREAD-NAME
Function: (not documented)
THREADS : THREADP
Function: (not documented)
THREADS : WITH-MUTEX
Function: (not documented)
THREADS : WITH-THREAD-LOCK
Function: (not documented)

24 CHAPTER 5. IMPLEMENTATION DEPENDENT EXTENSIONS

5.3 EXTENSIONS

The symbols in the EXTENSIONS package (nicknamed “EXT”) constitutes extensions to the
ANSI standard that are potentially useful to the user. They include functions for manipulating
network sockets, running external programs, registering object finalizers, constructing reference
weakly held by the garbage collector and others.

See 77 for a generic function interface to the native JVM contract for java.util.List .

5.3.1 API

5.3. EXTENSIONS

%CADDR

Macro: (not documented)
%CADR

Macro: (not documented)
%CAR

Macro: (not documented)
%CDR

Macro: (not documented)
AUTOLOAD-VERBOSEx

Variable: (not documented)
BATCH-MODE

Variable: (not documented)
COMMAND-LINE-ARGUMENT-LIST

Variable: (not documented)
DEBUG-CONDITION=

Variable: (not documented)
DEBUG-LEVELx

Variable: (not documented)
DISASSEMBLER

Variable: (not documented)
ED-FUNCTIONS

Variable: (not documented)
ENABLE-INLINE-EXPANSION=

Variable: (not documented)
INSPECTOR-HOOK

Variable: (not documented)
LISP-HOMEx

Variable: (not documented)
LOAD-TRUENAME-FASL

Variable: (not documented)
PRINT-STRUCTURE

Variable: (not documented)
REQUIRE-STACK-FRAME

Variable: (not documented)
SAVED-BACKTRACE

Variable: (not documented)
SUPPRESS-COMPILER-WARNINGS

Variable: (not documented)
WARN-ON-REDEFINITIONx

Variable: (not documented)
ADJOIN-EQL

Function: (not documented)
ARGLIST

Function: (not documented)
ASSQ

Function: (not documented)
ASSQL

Function: (not documented)
AUTOLOAD

Function: (not documented)
AUTOLOAD-MACRO

Function: (not documented)
AUTOLOADP

Function: (not documented)

25

26 CHAPTER 5. IMPLEMENTATION DEPENDENT EXTENSIONS

AVER

Macro: (not documented)
CANCEL-FINALIZATION

Function: (not documented)
CHAR-TO-UTF8

Function: (not documented)

CHARPOS

Function: (not documented)
CLASSP

Function: (not documented)
COLLECT

Macro: (not documented)
COMPILE-FILE-IF-NEEDED

Function: (not documented)
COMPILE-SYSTEM

Function: (not documented)
COMPILER-ERROR

Function: (not documented)

Class: (not documented)
COMPILER-UNSUPPORTED-FEATURE-ERROR

Class: (not documented)
DESCRIBE-COMPILER-POLICY

Function: (not documented)
DOUBLE-FLOAT-NEGATIVE-INFINITY

Variable: (not documented)
DOUBLE-FLOAT-POSITIVE-INFINITY

Variable: (not documented)
DUMP-JAVA-STACK

Function: (not documented)
EXIT

Function: (not documented)
FEATUREP

Function: (not documented)
FILE-DIRECTORY-P

Function: (not documented)

FINALIZE

Function: (not documented)
FIXNUMP

Function: (not documented)
GC

Function: (not documented)
GET-FLOATING-POINT-MODES

Function: (not documented)
GET-SOCKET-STREAM

Function: :ELEMENT-TYPE must be CHARACTER or (UNSIGNED-BYTE 8); the default is CHARACTER.
GETENV

Function: Return the value of the environment VARIABLE if it exists, otherwise return NIL.
GROVEL-JAVA-DEFINITIONS

Function: (not documented)
INIT-GUI

Function: (not documented)
INTERNAL-COMPILER-ERROR

Function: (not documented)

Class: (not documented)

5.3. EXTENSIONS

INTERRUPT-LISP

Function: (not documented)
JAR-PATHNAME

Class: (not documented)
MACROEXPAND-ALL

Function: (not documented)
MAILBOX

Class: (not documented)
MAKE-DIALOG-PROMPT-STREAM

Function: (not documented)
MAKE-SERVER-SOCKET

Function: (not documented)
MAKE-SLIME-INPUT-STREAM

Function: (not documented)
MAKE-SLIME-OUTPUT-STREAM

Function: (not documented)
MAKE-SOCKET

Function: (not documented)
MAKE-TEMP-FILE

Function: (not documented)
MAKE-WEAK-REFERENCE

Function: (not documented)
MEMQ

Function: (not documented)
MEMQL

Function: (not documented)
MOST-NEGATIVE-JAVA-LONG

Variable: (not documented)
MOST-POSITIVE-JAVA-LONG

Variable: (not documented)
MUTEX

Class: (not documented)
NEQ

Function: (not documented)
NIL-VECTOR

Class: (not documented)
PATHNAME-JAR-P

Function: (not documented)
PATHNAME-URL-P

Function: Predicate for whether PATHNAME references a URL.

PRECOMPILE

Function: (not documented)
PROBE-DIRECTORY

Function: (not documented)
PROCESS

Function: (not documented)
PROCESS-ALIVE-P

Function: (not documented)
PROCESS-ERROR

Function: (not documented)
PROCESS-EXIT-CODE

Function: (not documented)
PROCESS-INPUT

Function: (not documented)

27

28 CHAPTER 5. IMPLEMENTATION DEPENDENT EXTENSIONS

PROCESS-KILL

Function: (not documented)
PROCESS-0UTPUT

Function: (not documented)
PROCESS-P

Function: (not documented)
PROCESS-WAIT

Function: (not documented)
QUIT

Function: (not documented)
RESOLVE

Function: (not documented)
RUN-PROGRAM

Function: (not documented)
RUN-SHELL-COMMAND

Function: (not documented)
SERVER-SOCKET-CLOSE

Function: (not documented)
SET-FLOATING-POINT-MODES

Function: (not documented)
SHOW-RESTARTS

Function: (not documented)
SIMPLE-SEARCH

Function: (not documented)
SIMPLE-STRING-FILL

Function: (not documented)
SIMPLE-STRING-SEARCH

Function: (not documented)
SINGLE-FLOAT-NEGATIVE-INFINITY

Variable: (not documented)
SINGLE-FLOAT-POSITIVE-INFINITY

Variable: (not documented)
SLIME-INPUT-STREAM

Class: (not documented)
SLIME-OUTPUT-STREAM

Class: (not documented)
SOCKET-ACCEPT

Function: (not documented)
SOCKET-CLOSE

Function: (not documented)
SOCKET-LOCAL-ADDRESS

Function: Returns the local address of the given socket as a dotted quad string.
SOCKET-LOCAL-PORT

Function: Returns the local port number of the given socket.
SOCKET-PEER-ADDRESS

Function: Returns the peer address of the given socket as a dotted quad string.
SOCKET-PEER-PORT

Function: Returns the peer port number of the given socket.
SOURCE

Function: (not documented)
SOURCE-FILE-POSITION

Function: (not documented)
SOURCE-PATHNAME

Function: (not documented)

5.3. EXTENSIONS

SPECIAL-VARIABLE-P

Function: (not documented)
STRING-FIND

Function: (not documented)
STRING-INPUT-STREAM-CURRENT

Function: (not documented)
STRING-POSITION

Function: (not documented)
STYLE-WARN

Function: (not documented)
TRULY-THE

Special Operator: (not documented)

UPTIME

Function: (not documented)
URI-DECODE

Function: (not documented)
URI-ENCODE

Function: (not documented)
URL-PATHNAME

Class: (not documented)
URL-PATHNAME-AUTHORITY

Function: (not documented)
URL-PATHNAME-FRAGMENT

Function: (not documented)
URL-PATHNAME-QUERY

Function: (not documented)
URL-PATHNAME-SCHEME

Function: (not documented)
WEAK-REFERENCE

Class: (not documented)
WEAK-REFERENCE-VALUE

Function: (not documented)

29

30

CHAPTER 5. IMPLEMENTATION DEPENDENT EXTENSIONS

Chapter 6

Beyond ANSI

Naturally, in striving to be a useful contemporary Common Lisp implementation, ABCL endeav-
ors to include extensions beyond the ANSI specification which are either widely adopted or are
especially useful in working with the hosting JVM.

6.1 Implementation Dependent

1. Compiler to JVM 5 bytecode

2. Pathname extensions

6.2 Pathname

We implement an extension to the Pathname that allows for the description and retrieval of
resources named in a URI scheme that the JVM “understands”. Support is built-in to the “http”
and “https” implementations but additional protocol handlers may be installed at runtime by
having JVM symbols present in the sun.net.protocol.dynmamic pacakge. See [JAVA2006] for
more details.

ABCL has created specializations of the ANSI Pathname object to enable to use of URIs to
address dynamically loaded resources for the JVM. A URL-PATHNAME has a corresponding
URL whose cannoical representation is defined to be the NAMESTRING of the Pathname.

JAR-PATHNAME isa URL-PATHNAME isa PATHNAME

Both URL-PATHNAME and JAR-PATHNAME may be used anywhere a PATHNAME is
accepted with the following caveats:

e A stream obtained via OPEN on a URL-PATHNAME cannot be the target of write opera-
tions.

e No canonicalization is performed on the underlying URI (i.e. the implementation does not
attempt to compute the current name of the representing resource unless it is requested
to be resolved.) Upon resolution, any cannoicalization procedures followed in resolving the
resource (e.g. following redirects) are discarded.

The implementation of URL-PATHNAME allows the ABCL user to laod dynamically code
from the network. For example, for Quicklisp.

CL-USER> (load ”http://beta.quicklisp.org/quicklisp.lisp”)
will load and execute the Quicklisp setup code.

77

31

32 CHAPTER 6. BEYOND ANSI

Implementation

DEVICE either a string denoting a drive letter under DOS or a cons specifying a URL-PATHNAME.

6.3 Extensible Sequences

See 77 RHODES2007 for the design.

The SEQUENCE package fully implements Christopher Rhodes’ proposal for extensible se-
quences. These user extensible sequences are used directly in java-collections.lisp provide
these CLOS abstractions on the standard Java collection classes as defined by the java.util.List
contract.

This extension is not automatically loaded by the implementation. It may be loaded via:

CL-USER> (require ’java—collections)
if both extensible sequences and their application to Java collections is required, or
CL-USER> (require ’extensible—sequences)

if only the extensible sequences API as specified in ?7? is required.
Note that (require ’java-collections) must be issued before java.util.List or any
subclass is used as a specializer in a CLOS method definition (see the section below).

6.4 Extensions to CLOS

There is an additional syntax for specializing the parameter of a generic function on a java class,
viz. (java:jclass CLASS-STRING) where CLASS-STRING is a string naming a Java class in
dotted package form.

For instance the following specialization would perhaps allow one to print more information
about the contents of a java.util.Collection object

(defmethod print—object ((coll (java:jclass ”java.util.Collection”))
stream)

If the class had been loaded via a classloader other than the original the class you wish to
specialize on, one needs to specify the classloader as an optional third argument.

(defparameter xother—classloaderx
(jcall "getBaseLoader” cl—user::xclasspath—manager*))

(defmethod print—object ((device—id (java:jclass ”dto.nbi.service.hdm. alcatel.com.NBIDe¢
stream)

6.5 Extensions to the Reader

We implement a special hexadecimal escape sequence for specifying characters to the Lisp reader,
namely we allow a sequences of the form # \Uxxxx to be processed by the reader as character
whose code is specified by the hexadecimal digits “xxxx”. The hexadecimal sequence must be
exactly four digits long !, padded by leading zeros for values less than 0x1000.

1This represents a compromise with contemporary in 2011 32bit hosting architecures for which we wish to make
text processing efficient. Should the User require more control over UNICODE processing we recommend Edi Weisz’
excellent work with FLEXI-STREAMS which we fully support

6.6. ASDF 33

Note that this sequence is never output by the implementation. Instead, the corresponding
Unicode character is output for characters whose code is greater than 0x00ff.

6.5.1 JSS optionally extends the Reader

The JSS contrib consitutes an additional, optional extension to the reader in the definition of the
f#ieader macro.

6.6 ASDF

asdf-2.017.22 is packaged as core component of ABCL, but not intialized by default, as it relies on
the CLOS subsystem which can take a bit of time to initialize. It may be initialized by the ANSI
REQUIRE mechanism as follows:

CL-USER> (require ’asdf)

34

CHAPTER 6. BEYOND ANSI

Chapter 7

Contrib

7.1 abcl-asdf

This contrib to ABCL enables an additional syntax for ASDF system definition which dynamically
loads JVM artifacts such as jar archives via a Maven encapsulation. The Maven Aether can also be
directly manipulated by the function associated with the RESOLVE-DEPENDENCIES symbol.

The following ASDF components are added: JAR-FILE, JAR-DIRECTORY, CLASS-
FILE-DIRECTORY and MVN.

7.1.1 ABCL-ASDF Examples

;717 —*x— Mode: LISP —x—
(in—package :asdf)

(defsystem :logdj
:components ((:mvn "logdj/logdj”
:version 71.4.97)))

7.1.2 abcl-asdf API

We define an API as consisting of the following ASDF classes:

JAR-DIRECTORY, JAR-FILE, and CLASS-FILE-DIRECTORY for JVM artifacts that
have a currently valid pathname representation

And the MVN and IRI classes descend from ASDF-COMPONENT, but do not directly have
a filesystem location.

For use outside of ASDF, we currently define one method, RESOLVE-DEPENDENCIES
which locates, downloads, caches, and then loads into the currently executing JVM process all
recursive dependencies annotated in the Maven pom.xml graph.

7.1.3 ABCL-ASDF Example 2

Bypassing ASDF, one can directly issue requests for the Maven artifacts to be downloaded

CL-USER> (abcl—asdf:resolve—dependencies "com.google.gwt” ”"gwt—user”)
WARNING: Using LATEST for unspecified version.
7 /Users/evenson /.m2/repository /com/google/gwt/gwt—user/2.4.0—rcl/gwt—user—2.4.0—rcl

To actually load the dependency, use the JAVA:ADD-TO-CLASSPATH generic function:
CL-USER> (java:add—to—classpath (abcl—asdf:resolve—dependencies ”com. google.gwt”

»

g‘
Notice that all recursive dependencies have been located and installed locally from the network
as well.

35

36 CHAPTER 7. CONTRIB

7.2 asdf-jar

ASDF-JAR provides a system for packaging ASDF systems into jar archives for ABCL. Given
a running ABCL image with loadable ASDF systems the code in this package will recursively
package all the required source and fasls in a jar archive.

7.3 jss

To one used to a syntax that can construct macros, the Java syntax sucks, so we introduce the
”
#” macro.

7.3.1 JSS usage
Example:

CL—-USER> (require ’jss)
CL-USER) (#”getProperties” ’java.lang.System)

CL—USER) (#”propertyNames” (#”getProperties” ’java.lang.System))

7.4 asdf-install

An implementation of ASDF-INSTALL. Superseded by Quicklisp (qv.)

Chapter 8

History

ABCL was originally the extension language for the J editor, which was started in 1998 by Peter
Graves. Sometime in 2003, a whole lot of code that had previously not been released publically
was suddenly committed that enabled ABCL to be plausibly termed an emergent ANSI Common
Lisp implementation canidate.

From 2006 to 2008, Peter manned the development lists, incorporating patches as made sense.
After a suitable search, Peter nominated Erik Huelsmann to take over the project.

In 2008, the implementation was transferred to the current maintainers, who have strived to
improve its usability as a contemporary Common Lisp implementation.

On October 22, 2011, with the publication of this Manual explicitly stating the conformance
of Armed Bear Common Lisp to ANSI, we released abcl-1.0.0.

8.1 References

[Java2000]: A New Era for Java Protocol Handlers. http://java.sun.com/developer/onlineTraining/
protocolhandlers/

[Xach2011]: Quicklisp: A system for quickly constructing Common Lisp libraries. http:
//www.quicklisp.org/

[RHODES2007]: Christopher Rhodes

37

http://java.sun.com/developer/onlineTraining/protocolhandlers/
http://java.sun.com/developer/onlineTraining/protocolhandlers/
http://www.quicklisp.org/
http://www.quicklisp.org/

	Introduction
	Version
	License
	Contributors

	Running
	Options
	Initialization

	Conformance
	ANSI Common Lisp
	Contemporary Common Lisp
	Deficiencies

	Interaction with Hosting JVM
	Lisp to Java
	Low-level Java API

	Lisp from Java
	Lisp FFI
	Calling Lisp from Java
	Java Scripting API (JSR-223)

	Implementation Dependent Extensions
	JAVA
	Modifying the JVM CLASSPATH
	API

	THREADS
	API

	EXTENSIONS
	API

	Beyond ANSI
	Implementation Dependent
	Pathname
	Extensible Sequences
	Extensions to CLOS
	Extensions to the Reader
	JSS optionally extends the Reader

	ASDF

	Contrib
	abcl-asdf
	ABCL-ASDF Examples
	abcl-asdf API
	ABCL-ASDF Example 2

	asdf-jar
	jss
	JSS usage

	asdf-install

	History
	References

