
Armed Bear Common Lisp User Manual

Mark Evenson Erik Hülsmann Rudolf Schlatte Alessio Stalla
Ville Voutilainen

Version 1.3.0-dev

January 27, 2014

2

Contents

0.0.1 Preface to the Third Edition . 4
0.0.2 Preface to the Third Edition . 4
0.0.3 Preface to the Second Edition . 4

1 Introduction 5
1.1 Conformance . 5

1.1.1 ANSI Common Lisp . 5
1.1.2 Contemporary Common Lisp . 6

1.2 License . 6
1.3 Contributors . 6

2 Running ABCL 7
2.1 Options . 7
2.2 Initialization . 8

3 Interaction with the Hosting JVM 9
3.1 Lisp to Java . 9

3.1.1 Low-level Java API . 9
3.2 Java to Lisp . 11

3.2.1 Calling Lisp from Java . 11
3.3 Java Scripting API (JSR-223) . 13

3.3.1 Conversions . 13
3.3.2 Implemented JSR-223 interfaces . 13
3.3.3 Start-up and configuration file . 14
3.3.4 Evaluation . 14
3.3.5 Compilation . 15
3.3.6 Invocation of functions and methods . 15
3.3.7 Implementation of Java interfaces in Lisp 15
3.3.8 Implementation of Java classes in Lisp . 16

4 Implementation Dependent Extensions 17
4.1 JAVA . 17

4.1.1 Modifying the JVM CLASSPATH . 17
4.1.2 Creating a synthetic Java Class at Runtime 17

4.2 THREADS . 25
4.3 EXTENSIONS . 28

5 Beyond ANSI 39
5.1 Compiler to Java 5 Bytecode . 39
5.2 Pathname . 39
5.3 Package-Local Nicknames . 41
5.4 Extensible Sequences . 42
5.5 Extensions to CLOS . 42

3

4 CONTENTS

5.5.1 Metaobject Protocol . 42
5.5.2 Specializing on Java classes . 42

5.6 Extensions to the Reader . 43
5.7 Overloading of the CL:REQUIRE Mechanism . 43
5.8 JSS extension of the Reader by SHARPSIGN-DOUBLE-QUOTE 44
5.9 ASDF . 44

6 Contrib 45
6.1 abcl-asdf . 45

6.1.1 Referencing Maven Artifacts via ASDF . 45
6.1.2 API . 45
6.1.3 Directly Instructing Maven to Download JVM Artifacts 46

6.2 asdf-jar . 46
6.3 jss . 46

6.3.1 JSS usage . 46
6.4 jfli . 47
6.5 asdf-install . 47

7 History 49

A The MOP Dictionary 51

B The SYSTEM Dictionary 59

C The JSS Dictionary 71

0.0.1 Preface to the Third Edition

ABCL 1.3 now implements a lazily-created LispStack –The Mgmt.

0.0.2 Preface to the Third Edition

The implementation now contains a performant and conformant implementation of (A)MOP to
the point of inclusion in CLOSER-MOP’s test suite.

0.0.3 Preface to the Second Edition

ABCL 1.1 now contains (A)MOP. We hope you enjoy! –The Mgmt.

Chapter 1

Introduction

Armed Bear Common Lisp (ABCL) is an implementation of Common Lisp that runs on the
Java Virtual Machine. It compiles Common Lisp to Java 5 bytecode 1, providing the following
integration methods for interfacing with Java code and libraries:

• Lisp code can create Java objects and call their methods (see Section 3.1, page 9).

• Java code can call Lisp functions and generic functions, either directly (Section 3.2.1, page 11)
or via JSR-223 (Section 3.3, page 13).

• jinterface-implementation creates Lisp-side implementations of Java interfaces that can
be used as listeners for Swing classes and similar.

• java:jnew-runtime-class can inject fully synthetic Java classes–and their objects– into the
current JVM process whose behavior is specified via closures expressed in Common Lisp.. 2

ABCL is supported by the Lisp library manager QuickLisp3 and can run many of the programs
and libraries provided therein out-of-the-box.

1.1 Conformance

1.1.1 ANSI Common Lisp

ABCL is currently a (non)-conforming ANSI Common Lisp implementation due to the following
known issues:

• The generic function signatures of the CL:DOCUMENTATION symbol do not match the specifi-
cation.

• The CL:TIME form does not return a proper CL:VALUES environment to its caller.

• When merging pathnames and the defaults point to a EXT:JAR-PATHNAME, we set the DEVICE
of the result to :UNSPECIFIC if the pathname to be be merged does not contain a specified
DEVICE, does not contain a specified HOST, does contain a relative DIRECTORY, and we are
not running on a MSFT Windows platform.4

1The class file version is “49.0”.
2Parts of the current implementation are not fully finished, so the status of some interfaces here should be

treated with skepticism if you run into problems.
3http://quicklisp.org/
4The intent of this rather arcane sounding deviation from conformance is so that the result of a merge won’t fill in

a DEVICE with the wrong ”default device for the host” in the sense of the fourth paragraph in the CLHS description
of MERGE-PATHNAMES (see in [P+96] the paragraph beginning ”If the PATHNAME explicitly specifies a host
and not a device”). A future version of the implementation may return to conformance by using the HOST value to
reflect the type explicitly.

5

http://quicklisp.org/

6 CHAPTER 1. INTRODUCTION

Somewhat confusingly, this statement of non-conformance in the accompanying user documen-
tation fulfills the requirements that ABCL is a conforming ANSI Common Lisp implementation
according to the Common Lisp HyperSpec [P+96]. Clarifications to this point are solicited.

ABCL aims to be be a fully conforming ANSI Common Lisp implementation. Any other
behavior should be reported as a bug.

1.1.2 Contemporary Common Lisp

In addition to ANSI conformance, ABCL strives to implement features expected of a contempo-
rary Common Lisp, i.e. a Lisp of the post-2005 Renaissance.

The following known problems detract from ABCL being a proper contemporary Common
Lisp.

• An incomplete implementation of interactive debugging mechanisms, namely a no-op version
of STEP 5, the inability to inspect local variables in a given call frame, and the inability to
resume a halted computation at an arbitrarily selected call frame.

• Incomplete streams abstraction, in that ABCL needs suitable abstraction between ANSI
and Gray streams. 6

• Incomplete documentation (missing docstrings from exported symbols and the draft status
of this user manual).

1.2 License

ABCL is licensed under the terms of the GPL v2 of June 1991 with the “classpath-exception”
(see the file COPYING in the source distribution 7 for the license, term 13 in the same file for the
classpath exception). This license broadly means that you must distribute the sources to ABCL,
including any changes you make, together with a program that includes ABCL, but that you are
not required to distribute the sources of the whole program. Submitting your changes upstream
to the ABCL development team is actively encouraged and very much appreciated, of course.

1.3 Contributors

• Philipp Marek Thanks for the markup

• Douglas Miles Thanks for the whacky IKVM stuff and keeping the flame alive in

the dark years.

• Alan Ruttenberg Thanks for JSS.

• and of course Peter Graves

5Somewhat surprisingly allowed by ANSI
6The streams could be optimized to the JVM NIO [?] abstractions at great profit for binary byte-level manipu-

lations.
7See http://abcl.org/svn/trunk/tags/1.3.0/COPYING

http://abcl.org/svn/trunk/tags/1.3.0/COPYING

Chapter 2

Running ABCL

ABCL is packaged as a single jar file usually named either abcl.jar or possibly something like
abcl-1.3.0.jar if using a versioned package on the local filesystem from your system vendor.
This jar file can be executed from the command line to obtain a REPL1, viz:

cmd$ java -jar abcl.jar

N.b. for the proceeding command to work, the java executable needs to be in your path.
To facilitate the use of ABCL in tool chains such as SLIME [sli] (the Superior Lisp Interaction

Mode for Emacs), we provide both a Bourne shell script and a DOS batch file. If you or your
administrator adjusted the path properly, ABCL may be executed simply as:

cmd$ abcl

Probably the easiest way of setting up an editing environment using the Emacs editor is to
use Quicklisp and follow the instructions at http://www.quicklisp.org/beta/#slime.

2.1 Options

ABCL supports the following command line options:

--help displays a help message.

--noinform Suppresses the printing of startup information and banner.

--noinit suppresses the loading of the ~/.abclrc startup file.

--nosystem suppresses loading the system.lisp customization file.

--eval FORM evaluates FORM before initializing the REPL.

--load FILE loads the file FILE before initializing the REPL.

--load-system-file FILE loads the system file FILE before initializing the REPL.

--batch evaluates forms specified by arguments and in the initialization file ~/.abclrc, and
then exits without starting a REPL.

All of the command line arguments following the occurrence of -- are passed unprocessed
into a list of strings accessible via the variable EXT:*COMMAND-LINE-ARGUMENT-LIST* from within
ABCL.

1Read-Eval Print Loop, a Lisp command-line

7

http://www.quicklisp.org/beta/#slime

8 CHAPTER 2. RUNNING ABCL

2.2 Initialization

If the ABCL process is started without the --noinit flag, it attempts to load a file named
.abclrc in the user’s home directory and then interpret its contents.

The user’s home directory is determined by the value of the JVM system property user.home.
This value may or may not correspond to the value of the HOME system environment variable, at
the discretion of the JVM implementation that ABCL finds itself hosted upon.

Chapter 3

Interaction with the Hosting JVM

The Armed Bear Common Lisp implementation is hosted on a Java Virtual Machine. This chapter
describes the mechanisms by which the implementation interacts with that hosting mechanism.

3.1 Lisp to Java

ABCL offers a number of mechanisms to interact with Java from its Lisp environment. It allows
calling both instance and static methods of Java objects, manipulation of instance and static fields
on Java objects, and construction of new Java objects.

When calling Java routines, some values will automatically be converted by the FFI1 from
Lisp values to Java values. These conversions typically apply to strings, integers and floats. Other
values need to be converted to their Java equivalents by the programmer before calling the Java
object method. Java values returned to Lisp are also generally converted back to their Lisp
counterparts. Some operators make an exception to this rule and do not perform any conversion;
those are the “raw” counterparts of certain FFI functions and are recognizable by their name
ending with -RAW.

3.1.1 Low-level Java API

This subsection covers the low-level API available after evaluating (require ’JAVA). A higher
level Java API, developed by Alan Ruttenberg, is available in the contrib/ directory and described
later in this document, see Section 6.3 on page 46.

Calling Java Object Methods

There are two ways to call a Java object method in the low-level (basic) API:

• Call a specific method reference (which was previously acquired)

• Dynamic dispatch using the method name and the call-specific arguments provided by finding
the best match (see Section 3.1.1).

JAVA:JMETHOD is used to acquire a specific method reference. The function takes two or
more arguments. The first is a Java class designator (a JAVA:JAVA-CLASS object returned by
JAVA:JCLASS or a string naming a Java class). The second is a string naming the method.

Any arguments beyond the first two should be strings naming Java classes, with one exception
as listed in the next paragraph. These classes specify the types of the arguments for the method.

1Foreign Function Interface, is the term of art for the part of a Lisp implementation which implements calling
code written in other languages, typically normalized to the local C compiler calling conventions.

9

10 CHAPTER 3. INTERACTION WITH THE HOSTING JVM

When JAVA:JMETHOD is called with three parameters and the last parameter is an integer, the
first method by that name and matching number of parameters is returned.

Once a method reference has been acquired, it can be invoked using JAVA:JCALL, which takes
the method as the first argument. The second argument is the object instance to call the method
on, or NIL in case of a static method. Any remaining parameters are used as the remaining
arguments for the call.

Calling Java object methods: dynamic dispatch

The second way of calling Java object methods is by using dynamic dispatch. In this case
JAVA:JCALL is used directly without acquiring a method reference first. In this case, the first
argument provided to JAVA:JCALL is a string naming the method to be called. The second argu-
ment is the instance on which the method should be called and any further arguments are used
to select the best matching method and dispatch the call.

Dynamic dispatch: Caveats

Dynamic dispatch is performed by using the Java reflection API 2. Generally the dispatch works
fine, but there are corner cases where the API does not correctly reflect all the details involved in
calling a Java method. An example is the following Java code:

ZipFile jar = new ZipFile("/path/to/some.jar");

Object els = jar.entries ();

Method method = els.getClass (). getMethod("hasMoreElements");

method.invoke(els);

Even though the method hasMoreElements() is public in Enumeration, the above code fails
with

java.lang.IllegalAccessException: Class ... can

not access a member of class java.util.zip.ZipFile\$2 with modifiers

"public"

at sun.reflect.Reflection.ensureMemberAccess(Reflection.java :65)

at java.lang.reflect.Method.invoke(Method.java :583)

at ...

This is because the method has been overridden by a non-public class and the reflection API,
unlike javac, is not able to handle such a case.

While code like that is uncommon in Java, it is typical of ABCL’s FFI calls. The code above
corresponds to the following Lisp code:

(let ((jar (jnew "java.util.zip.ZipFile" "/path/to/some.jar")))

(let ((els (jcall "entries" jar)))

(jcall "hasMoreElements" els)))

except that the dynamic dispatch part is not shown.
To avoid such pitfalls, all Java objects in ABCL carry an extra field representing the “intended

class” of the object. That class is used first by JAVA:JCALL and similar to resolve methods; the
actual class of the object is only tried if the method is not found in the intended class. Of course,
the intended class is always a super-class of the actual class – in the worst case, they coincide.
The intended class is deduced by the return type of the method that originally returned the Java
object; in the case above, the intended class of ELS is java.util.Enumeration because that is
the return type of the entries method.

While this strategy is generally effective, there are cases where the intended class becomes too
broad to be useful. The typical example is the extraction of an element from a collection, since
methods in the collection API erase all types to Object. The user can always force a more specific
intended class by using the JAVA:JCOERCE operator.

2The Java reflection API is found in the java.lang.reflect package

3.2. JAVA TO LISP 11

Calling Java class static methods

Like non-static methods, references to static methods can be acquired by using the JAVA:JMETHOD

primitive. Static methods are called with JAVA:JSTATIC instead of JAVA:JCALL.

Like JAVA:JCALL, JAVA:JSTATIC supports dynamic dispatch by passing the name of the method
as a string instead of passing a method reference. The parameter values should be values to pass
in the function call instead of a specification of classes for each parameter.

Parameter matching for FFI dynamic dispatch

The algorithm used to resolve the best matching method given the name and the arguments’ types
is the same as described in the Java Language Specification. Any deviation should be reported as
a bug.

Instantiating Java objects

Java objects can be instantiated (created) from Lisp by calling a constructor from the class of the
object to be created. The JAVA:JCONSTRUCTOR primitive is used to acquire a constructor reference.
It’s arguments specify the types of arguments of the constructor method the same way as with
JAVA:JMETHOD.

The obtained constructor is passed as an argument to JAVA:JNEW, together with any arguments.
JAVA:JNEW can also be invoked with a string naming the class as its first argument.

Accessing Java object and class fields

Fields in Java objects can be accessed using the getter and setter functions JAVA:JFIELD and
(SETF JAVA:JFIELD). Static (class) fields are accessed the same way, but with a class object or
string naming a class as first argument.

Like JAVA:JCALL and friends, values returned from these accessors carry an intended class
around, and values which can be converted to Lisp values will be converted.

3.2 Java to Lisp

This section describes the various ways that one interacts with Lisp from Java code. In order to
access the Lisp world from Java, one needs to be aware of a few things, the most important ones
being listed below:

• All Lisp values are descendants of LispObject.

• Lisp symbols are accessible either via static members of the Symbol class, or by dynamically
introspecting a Package object.

• The Lisp dynamic environment may be saved via LispThread.bindSpecial(Binding) and
restored via LispThread.resetSpecialBindings(Mark).

• Functions can be executed by invoking LispObject.execute(args [...])

3.2.1 Calling Lisp from Java

Note: the entire ABCL Lisp system resides in the org.armedbear.lisp package, but the following
code snippets do not show the relevant import statements in the interest of brevity. An example
of the import statement would be

import org.armedbear.lisp .*;

12 CHAPTER 3. INTERACTION WITH THE HOSTING JVM

to potentially import all the JVM symbol from the ‘org.armedbear.lisp’ namespace.
There can only ever be a single Lisp interpreter per JVM instance. A reference to this inter-

preter is obtained by calling the static method Interpreter.createInstance().

Interpreter interpreter = Interpreter.createInstance ();

If this method has already been invoked in the lifetime of the current Java process it will return
null, so if you are writing Java whose life-cycle is a bit out of your control (like in a Java servlet),
a safer invocation pattern might be:

Interpreter interpreter = Interpreter.getInstance ();

if (interpreter == null) {

interpreter = Interpreter.createInstance ();

}

The Lisp eval primitive may simply be passed strings for evaluation:

String line = "(load \"file.lisp \")";

LispObject result = interpreter.eval(line);

Notice that all possible return values from an arbitrary Lisp computation are collapsed into
a single return value. Doing useful further computation on the LispObject depends on knowing
what the result of the computation might be. This usually involves some amount of instanceof
introspection, and forms a whole topic to itself (see Section 3.2.1, page 12).

Using eval involves the Lisp interpreter. Lisp functions may also be directly invoked by Java
method calls as follows. One simply locates the package containing the symbol, obtains a reference
to the symbol, and then invokes the execute() method with the desired parameters.

interpreter.eval("(defun foo (msg)" +

"(format nil \"You told me ’~A ’~%\" msg))");

Package pkg = Packages.findPackage("CL -USER");

Symbol foo = pkg.findAccessibleSymbol("FOO");

Function fooFunction = (Function)foo.getSymbolFunction ();

JavaObject parameter = new JavaObject("Lisp is fun!");

LispObject result = fooFunction.execute(parameter);

// How to get the "naked string value"?

System.out.println("The result was " + result.writeToString ());

If one is calling a function in the CL package, the syntax can become considerably simpler.
If we can locate the instance of definition in the ABCL Java source, we can invoke the symbol
directly. For instance, to tell if a LispObject is (Lisp) NIL, we can invoke the CL function NULL

in the following way:

boolean nullp(LispObject object) {

LispObject result = Primitives.NULL.execute(object);

if (result == NIL) { // the symbol ’NIL’ is explicitly named in the Java

// namespace at ‘‘Symbol.NIL ’’

// but is always present in the

// local namespace in its unadorned form for

// the convenience of the User.

return false;

}

return true;

}

Introspecting a LispObject

We present various patterns for introspecting an arbitrary LispObject which can hold the result
of every Lisp evaluation into semantics that Java can meaningfully deal with.

3.3. JAVA SCRIPTING API (JSR-223) 13

LispObject as boolean If the LispObject is to be interpreted as a generalized boolean value,
one can use getBooleanValue() to convert to Java:

LispObject object = Symbol.NIL;

boolean javaValue = object.getBooleanValue ();

Since in Lisp any value other than NIL means ”true”, Java equality can also be used, which is
a bit easier to type and better in terms of information it conveys to the compiler:

boolean javaValue = (object != Symbol.NIL);

LispObject as a list If LispObject is a list, it will have the type Cons. One can then use the
copyToArray method to make things a bit more suitable for Java iteration.

LispObject result = interpreter.eval(" ’(1 2 4 5)");

if (result instanceof Cons) {

LispObject array [] = ((Cons)result.copyToArray ());

...

}

A more Lispy way to iterate down a list is to use the ‘cdr()‘ access function just as like one
would traverse a list in Lisp:;

LispObject result = interpreter.eval(" ’(1 2 4 5)");

while (result != Symbol.NIL) {

doSomething(result.car ());

result = result.cdr ();

}

3.3 Java Scripting API (JSR-223)

ABCL can be built with support for JSR-223 [Gro06], which offers a language-agnostic API to
invoke other languages from Java. The binary distribution download-able from ABCL’s homepage
is built with JSR-223 support. If you’re building ABCL from source on a pre-1.6 JVM, you need to
have a JSR-223 implementation in your classpath (such as Apache Commons BSF 3.x or greater)
in order to build ABCL with JSR-223 support; otherwise, this feature will not be built.

This section describes the design decisions behind the ABCL JSR-223 support. It is not a
description of what JSR-223 is or a tutorial on how to use it. See http://abcl.org/trac/

browser/trunk/abcl/examples/jsr-223 for example usage.

3.3.1 Conversions

In general, ABCL’s implementation of the JSR-223 API performs implicit conversion from Java
objects to Lisp objects when invoking Lisp from Java, and the opposite when returning values
from Java to Lisp. This potentially reduces coupling between user code and ABCL. To avoid such
conversions, wrap the relevant objects in JavaObject instances.

3.3.2 Implemented JSR-223 interfaces

JSR-223 defines three main interfaces, of which two (Invocable and Compilable) are optional.
ABCL implements all the three interfaces - ScriptEngine and the two optional ones - almost
completely. While the JSR-223 API is not specific to a single scripting language, it was designed
with languages with a more or less Java-like object model in mind: languages such as Javascript,
Python, Ruby, which have a concept of ”class” or ”object” with ”fields” and ”methods”. Lisp
is a bit different, so certain adaptations were made, and in one case a method has been left
unimplemented since it does not map at all to Lisp.

http://abcl.org/trac/browser/trunk/abcl/examples/jsr-223
http://abcl.org/trac/browser/trunk/abcl/examples/jsr-223

14 CHAPTER 3. INTERACTION WITH THE HOSTING JVM

The ScriptEngine

The main interface defined by JSR-223, javax.script.ScriptEngine, is implemented by the class
org.armedbear.lisp.scripting.AbclScriptEngine. AbclScriptEngine is a singleton, reflect-
ing the fact that ABCL is a singleton as well. You can obtain an instance of AbclScriptEngine us-
ing the AbclScriptEngineFactory or by using the service provider mechanism through ScriptEngineManager

(refer to the javax.script documentation).

3.3.3 Start-up and configuration file

At start-up (i.e. when its constructor is invoked, as part of the static initialization phase of
AbclScriptEngineFactory) the ABCL script engine attempts to load an ”init file” from the
classpath (/abcl-script-config.lisp). If present, this file can be used to customize the behavior
of the engine, by setting a number of variables in the ABCL-SCRIPT package. Here is a list of the
available variables:

use-throwing-debugger controls whether ABCL uses a non-standard debugging hook function
to throw a Java exception instead of dropping into the debugger in case of unhandled error
conditions.

• Default value: T

• Rationale: it is more convenient for Java programmers using Lisp as a scripting language
to have it return exceptions to Java instead of handling them in the Lisp world.

• Known Issues: the non-standard debugger hook has been reported to misbehave in
certain circumstances, so consider disabling it if it doesn’t work for you.

launch-swank-at-startup If true, Swank will be launched at startup. See *swank-dir* and
swank-port.

• Default value: NIL

swank-dir The directory where Swank is installed. Must be set if *launch-swank-at-startup*
is true.

swank-port The port where Swank will listen for connections. Must be set if *launch-swank-at-startup*
is true.

• Default value: 4005

Additionally, at startup the AbclScriptEngine will (require ’asdf) - in fact, it uses asdf to
load Swank.

3.3.4 Evaluation

Code is read and evaluated in the package ABCL-SCRIPT-USER. This packages USEs the COMMON-LISP,
JAVA and ABCL-SCRIPT packages. Future versions of the script engine might make this default
package configurable. The CL:LOAD function is used under the hood for evaluating code, and thus
the behavior of LOAD is guaranteed. This allows, among other things, IN-PACKAGE forms to change
the package in which the loaded code is read.

It is possible to evaluate code in what JSR-223 calls a “ScriptContext” (basically a flat environ-
ment of name→value pairs). This context is used to establish special bindings for all the variables
defined in it; since variable names are strings from Java’s point of view, they are first interned
using READ-FROM-STRING with, as usual, ABCL-SCRIPT-USER as the default package. Variables are
declared special because CL’s LOAD, EVAL and COMPILE functions work in a null lexical environment
and would ignore non-special bindings.

Contrary to what the function LOAD does, evaluation of a series of forms returns the value of
the last form instead of T, so the evaluation of short scripts does the Right Thing.

3.3. JAVA SCRIPTING API (JSR-223) 15

3.3.5 Compilation

AbclScriptEngine implements the javax.script.Compilable interface. Currently it only sup-
ports compilation using temporary files. Compiled code, returned as an instance of javax.script.CompiledScript,
is read, compiled and executed by default in the ABCL-SCRIPT-USER package, just like evaluated
code. In contrast to evaluated code, though, due to the way the ABCL compiler works, compiled
code contains no reference to top-level self-evaluating objects (like numbers or strings). Thus,
when evaluated, a piece of compiled code will return the value of the last non-self-evaluating form:
for example the code “(do-something) 42” will return 42 when interpreted, but will return the
result of (do-something) when compiled and later evaluated. To ensure consistency of behavior
between interpreted and compiled code, make sure the last form is always a compound form - at
least (identity some-literal-object). Note that this issue should not matter in real code,
where it is unlikely a top-level self-evaluating form will appear as the last form in a file (in fact,
the Common Lisp load function always returns T upon success; with JSR-223 this policy has been
changed to make evaluation of small code snippets work as intended).

3.3.6 Invocation of functions and methods

AbclScriptEngine implements the javax.script.Invocable interface, which allows to directly
call Lisp functions and methods, and to obtain Lisp implementations of Java interfaces. This is
only partially possible with Lisp since it has functions, but not methods - not in the traditional
OO sense, at least, since Lisp methods are not attached to objects but belong to generic functions.
Thus, the method invokeMethod() is not implemented and throws an UnsupportedOperationException

when called. The invokeFunction() method should be used to call both regular and generic func-
tions.

3.3.7 Implementation of Java interfaces in Lisp

ABCL can use the Java reflection-based proxy feature to implement Java interfaces in Lisp. It
has several built-in ways to implement an interface, and supports definition of new ones. The
JAVA:JMAKE-PROXY generic function is used to make such proxies. It has the following signature:

jmake-proxy interface implementation &optional lisp-this ==> proxy

interface is a Java interface metaobject (e.g. obtained by invoking jclass) or a string naming
a Java interface. implementation is the object used to implement the interface - several built-in
methods of jmake-proxy exist for various types of implementations. lisp-this is an object passed
to the closures implementing the Lisp ”methods” of the interface, and defaults to NIL.

The returned proxy is an instance of the interface, with methods implemented with Lisp
functions.

Built-in interface-implementation types include:

• a single Lisp function which upon invocation of any method in the interface will be passed
the method name, the Lisp-this object, and all the parameters. Useful for interfaces with a
single method, or to implement custom interface-implementation strategies.

• a hash-map of method-name → Lisp function mappings. Function signature is (lisp-this

&rest args).

• a Lisp package. The name of the Java method to invoke is first transformed in an idiomatic
Lisp name (javaMethodName becomes JAVA-METHOD-NAME) and a symbol with that name is
searched in the package. If it exists and is fbound, the corresponding function will be called.
Function signature is as the hash-table case.

This functionality is exposed by the class AbclScriptEngine via the two methods getInterface(Class)
and getInterface(Object, Class). The former returns an interface implemented with the cur-
rent Lisp package, the latter allows the programmer to pass an interface-implementation object
which will in turn be passed to the jmake-proxy generic function.

16 CHAPTER 3. INTERACTION WITH THE HOSTING JVM

3.3.8 Implementation of Java classes in Lisp

See JAVA:JNEW-RUNTIME-CLASS on 4.1.2.

Chapter 4

Implementation Dependent
Extensions

As outlined by the CLHS ANSI conformance guidelines, we document the extensions to the Armed
Bear Lisp implementation made accessible to the user by virtue of being an exported symbol in
the JAVA, THREADS, or EXTENSIONS packages.

4.1 JAVA

4.1.1 Modifying the JVM CLASSPATH

The JAVA:ADD-TO-CLASSPATH generic functions allows one to add the specified pathname or
list of pathnames to the current classpath used by ABCL, allowing the dynamic loading of JVM
objects:

CL-USER > (add-to-classpath "/path/to/some.jar")

N.b ADD-TO-CLASSPATH only affects the classloader used by ABCL (the value of the special
variable JAVA:*CLASSLOADER*. It has no effect on Java code outside ABCL.

4.1.2 Creating a synthetic Java Class at Runtime

See JAVA:JNEW-RUNTIME-CLASS on 4.1.2.

17

18 CHAPTER 4. IMPLEMENTATION DEPENDENT EXTENSIONS

— Function: java-exception-cause [java] java-exception

not-documented

— Function: jclass-superclass-p [java] class-1 class-2

Returns T if CLASS-1 is a superclass or interface of CLASS-2

— Function: jinterface-implementation [java] interface &rest method-names-and-defs

Creates and returns an implementation of a Java interface with methods
calling Lisp closures as given in METHOD-NAMES-AND-DEFS.

INTERFACE is either a Java interface or a string naming one.
METHOD-NAMES-AND-DEFS is an alternating list of method names

(strings) and method definitions (closures).
For missing methods, a dummy implementation is provided that returns

nothing or null depending on whether the return type is void or not. This
is for convenience only, and a warning is issued for each undefined method.

— Function: dump-classpath [java] &optional classloader

not-documented

— Function: ensure-java-object [java] obj

Ensures OBJ is wrapped in a JAVA-OBJECT, wrapping it if necessary.

— Function: jmethod-return-type [java] method

Returns the result type (Java class) of the METHOD

— Function: jfield-name [java] field

Returns the name of FIELD as a Lisp string

— Variable: *java-object-to-string-length* [java]

Length to truncate toString() PRINT-OBJECT output for an otherwise
unspecialized JAVA-OBJECT. Can be set to NIL to indicate no limit.

— Function: jinstance-of-p [java] obj class

OBJ is an instance of CLASS (or one of its subclasses)

— Function: jstatic-raw [java] method class &rest args

Invokes the static method METHOD on class CLASS with ARGS. Does
not attempt to coerce the arguments or result into a Lisp object.

— Macro: define-java-class [java]

not-documented

— Function: jclass-of [java] object &optional name

Returns the name of the Java class of OBJECT. If the NAME argument
is supplied, verifies that OBJECT is an instance of the named class. The
name of the class or nil is always returned as a second value.

— Function: jrun-exception-protected [java] closure

Invokes the function CLOSURE and returns the result. Signals an error if
stack or heap exhaustion occurs.

4.1. JAVA 19

— Function: jmethod-name [java] method

Returns the name of METHOD as a Lisp string

— Function: get-default-classloader [java]

not-documented

— Function: jclass-methods [java] class &key declared public

Return a vector of all (or just the declared/public, if DECLARED/PUBLIC
is true) methods of CLASS

— Function: get-current-classloader [java]

not-documented

— Function: register-java-exception [java] exception-name condition-symbol

Registers the Java Throwable named by the symbol EXCEPTION-NAME
as the condition designated by CONDITION-SYMBOL. Returns T if suc-
cessful, NIL if not.

— Function: jclass [java] name-or-class-ref &optional class-loader

Returns a reference to the Java class designated by NAME-OR-CLASS-
REF. If the CLASS-LOADER parameter is passed, the class is resolved
with respect to the given ClassLoader.

— Function: jnew-array-from-list [java] element-type list

not-documented

— Function: jmethod [java] class-ref method-name &rest parameter-class-refs

Returns a reference to the Java method METHOD-NAME of CLASS-REF
with the given PARAMETER-CLASS-REFS.

— Function: jproperty-value [java] obj prop

not-documented

— Function: jfield-type [java] field

Returns the type (Java class) of FIELD

— Function: jnew-runtime-class [java] class-name &rest args &key (superclass java.lang.Object)
interfaces constructors methods fields (access-flags (quote (public))) annotations

Creates and loads a Java class with methods calling Lisp closures as given
in METHODS. CLASS-NAME and SUPER-NAME are strings, INTER-
FACES is a list of strings, CONSTRUCTORS, METHODS and FIELDS
are lists of constructor, method and field definitions.

Constructor definitions - currently NOT supported - are lists of the form
(argument-types function &optional super-invocation-arguments) where argument-
types is a list of strings and function is a lisp function of (1+ (length
argument-types)) arguments; the instance (‘this’) is passed in as the last
argument. The optional super-invocation-arguments is a list of numbers
between 1 and (length argument-types), where the number k stands for the
kth argument to the just defined constructor. If present, the constructor
of the superclass will be called with the appropriate arguments. E.g., if

20 CHAPTER 4. IMPLEMENTATION DEPENDENT EXTENSIONS

the constructor definition is ((”java.lang.String” ”int”) #’(lambda (string i
this) ...) (2 1)) then the constructor of the superclass with argument types
(int, java.lang.String) will be called with the second and first arguments.

Method definitions are lists of the form (method-name return-type argument-
types function &key modifiers annotations) where method-name is a string,
return-type and argument-types are strings or keywords for primitive types
(:void, :int, etc.), and function is a Lisp function of minimum arity (1+
(length argument-types)); the instance (‘this’) is passed in as the first ar-
gument.

Field definitions are lists of the form (field-name type &key modifiers
annotations).

— Function: jclass-constructors [java] class

Returns a vector of constructors for CLASS

— Function: jstatic [java] method class &rest args

Invokes the static method METHOD on class CLASS with ARGS.

— Function: jmethod-params [java] method

Returns a vector of parameter types (Java classes) for METHOD

— Function: jnew [java] constructor &rest args

Invokes the Java constructor CONSTRUCTOR with the arguments ARGS.

— Function: jregister-handler [java] object event handler &key data count

not-documented

— Function: jclass-superclass [java] class

Returns the superclass of CLASS, or NIL if it hasn’t got one

— Function: java-object-p [java] object

Returns T if OBJECT is a JAVA-OBJECT.

— Function: jarray-component-type [java] atype

Returns the component type of the array type ATYPE

— Generic Function: add-to-classpath [java]

not-documented

— Function: unregister-java-exception [java] exception-name

Unregisters the Java Throwable EXCEPTION-NAME previously registered
by REGISTER-JAVA-EXCEPTION.

— Function: jobject-lisp-value [java] java-object

Attempts to coerce JAVA-OBJECT into a Lisp object.

— Function: jclass-name [java] class-ref &optional name

When called with one argument, returns the name of the Java class des-
ignated by CLASS-REF. When called with two arguments, tests whether
CLASS-REF matches NAME.

4.1. JAVA 21

— Function: jarray-from-list [java] list

Return a Java array from LIST whose type is inferred from the first element.

For more control over the type of the array, use JNEW-ARRAY-FROM-
LIST.

— Function: jmember-public-p [java] member

MEMBER is a public member of its declaring class

— Variable: +null+ [java]

The JVM null object reference.

— Function: ensure-java-class [java] jclass

not-documented

— Class: java-class [java]

not-documented

— Macro: jmethod-let [java]

not-documented

— Function: jclass-array-p [java] class

Returns T if CLASS is an array class

— Function: jcall [java] method-ref instance &rest args

Invokes the Java method METHOD-REF on INSTANCE with arguments
ARGS, coercing the result into a Lisp object, if possible.

— Function: jarray-ref-raw [java] java-array &rest indices

Dereference the Java array JAVA-ARRAY using the given INDICIES. Does
not attempt to coerce the result into a Lisp object.

— Function: jequal [java] obj1 obj2

Compares obj1 with obj2 using java.lang.Object.equals()

— Function: jnull-ref-p [java] object

Returns a non-NIL value when the JAVA-OBJECT ‘object‘ is ‘null‘, or
signals a TYPE-ERROR condition if the object isn’t of the right type.

— Function: jnew-array [java] element-type &rest dimensions

Creates a new Java array of type ELEMENT-TYPE, with the given DI-
MENSIONS.

— Macro: chain [java]

not-documented

22 CHAPTER 4. IMPLEMENTATION DEPENDENT EXTENSIONS

— Function: jfield [java] class-ref-or-field field-or-instance &optional instance value

Retrieves or modifies a field in a Java class or instance.
Supported argument patterns:
Case 1: class-ref field-name: Retrieves the value of a static field.
Case 2: class-ref field-name instance-ref: Retrieves the value of a class

field of the instance.
Case 3: class-ref field-name primitive-value: Stores a primitive-value in

a static field.
Case 4: class-ref field-name instance-ref value: Stores value in a class

field of the instance.
Case 5: class-ref field-name nil value: Stores value in a static field (when

value may be confused with an instance-ref).
Case 6: field-name instance: Retrieves the value of a field of the in-

stance. The class is derived from the instance.
Case 7: field-name instance value: Stores value in a field of the instance.

The class is derived from the instance.

— Class: java-object [java]

not-documented

— Function: jclass-interfaces [java] class

Returns the vector of interfaces of CLASS

— Variable: +true+ [java]

The JVM primitive value for boolean true.

— Function: jmake-invocation-handler [java] function

not-documented

— Function: jresolve-method [java] method-name instance &rest args

Finds the most specific Java method METHOD-NAME on INSTANCE
applicable to arguments ARGS. Returns NIL if no suitable method is found.
The algorithm used for resolution is the same used by JCALL when it is
called with a string as the first parameter (METHOD-REF).

— Function: make-classloader [java] &optional parent

not-documented

— Function: jmember-protected-p [java] member

MEMBER is a protected member of its declaring class

— Function: make-immediate-object [java] object &optional type

Attempts to coerce a given Lisp object into a java-object of the given type.
If type is not provided, works as jobject-lisp-value. Currently, type may be
:BOOLEAN, treating the object as a truth value, or :REF, which returns
Java null if NIL is provided.

Deprecated. Please use JAVA:+NULL+, JAVA:+TRUE+, and JAVA:+FALSE+
for constructing wrapped primitive types, JAVA:JOBJECT-LISP-VALUE
for converting a JAVA:JAVA-OBJECT to a Lisp value, or JAVA:JNULL-
REF-P to distinguish a wrapped null JAVA-OBJECT from NIL.

4.1. JAVA 23

— Function: jnew-array-from-array [java] element-type array

Returns a new Java array with base type ELEMENT-TYPE (a string or a
class-ref) initialized from ARRAY

— Function: jobject-class [java] obj

Returns the Java class that OBJ belongs to

— Function: jclass-fields [java] class &key declared public

Returns a vector of all (or just the declared/public, if DECLARED/PUB-
LIC is true) fields of CLASS

— Class: java-exception [java]

not-documented

— Function: describe-java-object [java]

not-documented

— Function: jfield-raw [java] class-ref-or-field field-or-instance &optional instance value

Retrieves or modifies a field in a Java class or instance. Does not attempt
to coerce its value or the result into a Lisp object.

Supported argument patterns:
Case 1: class-ref field-name: Retrieves the value of a static field.
Case 2: class-ref field-name instance-ref: Retrieves the value of a class

field of the instance.
Case 3: class-ref field-name primitive-value: Stores a primitive-value in

a static field.
Case 4: class-ref field-name instance-ref value: Stores value in a class

field of the instance.
Case 5: class-ref field-name nil value: Stores value in a static field (when

value may be confused with an instance-ref).
Case 6: field-name instance: Retrieves the value of a field of the in-

stance. The class is derived from the instance.
Case 7: field-name instance value: Stores value in a field of the instance.

The class is derived from the instance.

— Function: jconstructor-params [java] constructor

Returns a vector of parameter types (Java classes) for CONSTRUCTOR

— Function: jmember-static-p [java] member

MEMBER is a static member of its declaring class

— Function: jcoerce [java] object intended-class

Attempts to coerce OBJECT into a JavaObject of class INTENDED-
CLASS. Raises a TYPE-ERROR if no conversion is possible.

— Function: jconstructor [java] class-ref &rest parameter-class-refs

Returns a reference to the Java constructor of CLASS-REF with the given
PARAMETER-CLASS-REFS.

— Function: jarray-set [java] java-array new-value &rest indices

Stores NEW-VALUE at the given index in JAVA-ARRAY.

24 CHAPTER 4. IMPLEMENTATION DEPENDENT EXTENSIONS

— Function: jarray-length [java] java-array

not-documented

— Function: jarray-ref [java] java-array &rest indices

Dereferences the Java array JAVA-ARRAY using the given INDICIES, co-
ercing the result into a Lisp object, if possible.

— Function: jclass-field [java] class field-name

Returns the field named FIELD-NAME of CLASS

— Generic Function: jmake-proxy [java]

not-documented

— Function: jcall-raw [java] method-ref instance &rest args

Invokes the Java method METHOD-REF on INSTANCE with arguments
ARGS. Does not attempt to coerce the result into a Lisp object.

— Variable: +false+ [java]

The JVM primitive value for boolean false.

— Function: jclass-interface-p [java] class

Returns T if CLASS is an interface

4.2. THREADS 25

4.2 THREADS

The extensions for handling multithreaded execution are collected in the THREADS package. Most
of the abstractions in Doug Lea’s excellent java.util.concurrent packages may be manipulated
directly via the JSS contrib to great effect.

26 CHAPTER 4. IMPLEMENTATION DEPENDENT EXTENSIONS

— Function: mailbox-empty-p [threads] mailbox

Returns non-NIL if the mailbox can be read from, NIL otherwise.

— Function: threadp [threads]

not-documented

— Function: destroy-thread [threads]

not-documented

— Macro: with-mutex [threads]

not-documented

— Function: thread-join [threads] thread

Waits for thread to finish.

— Function: release-mutex [threads] mutex

Releases a lock on the ‘mutex’.

— Function: object-wait [threads]

not-documented

— Function: make-thread [threads] function &key name

not-documented

— Function: make-thread-lock [threads]

Returns an object to be used with the ‘with-thread-lock’ macro.

— Function: object-notify-all [threads]

not-documented

— Function: make-mailbox [threads] &key ((queue g2304220) NIL)

not-documented

— Function: object-notify [threads] object

not-documented

— Function: get-mutex [threads] mutex

Acquires a lock on the ‘mutex’.

— Function: mailbox-peek [threads] mailbox

Returns two values. The second returns non-NIL when the mailbox is
empty. The first is the next item to be read from the mailbox if the first is
NIL.

Note that due to multi-threading, the first value returned upon peek,
may be different from the one returned upon next read in the calling thread.

— Function: thread-alive-p [threads] thread

Boolean predicate whether THREAD is alive.

4.2. THREADS 27

— Function: mailbox-read [threads] mailbox

Blocks on the mailbox until an item is available for reading. When an item
is available, it is returned.

— Special Operator: synchronized-on [threads]

not-documented

— Function: interrupt-thread [threads] thread function &rest args

Interrupts THREAD and forces it to apply FUNCTION to ARGS. When
the function returns, the thread’s original computation continues. If mul-
tiple interrupts are queued for a thread, they are all run, but the order is
not guaranteed.

— Function: make-mutex [threads] &key ((in-use g2304421) NIL)

not-documented

— Class: thread [threads]

not-documented

— Macro: with-thread-lock [threads]

not-documented

— Function: mailbox-send [threads] mailbox item

Sends an item into the mailbox, notifying 1 waiter to wake up for retrieval
of that object.

— Function: thread-name [threads]

not-documented

— Function: current-thread [threads]

not-documented

— Function: mapcar-threads [threads]

not-documented

28 CHAPTER 4. IMPLEMENTATION DEPENDENT EXTENSIONS

4.3 EXTENSIONS

The symbols in the EXTENSIONS package (nicknamed “EXT”) constitutes extensions to the
ANSI standard that are potentially useful to the user. They include functions for manipulating
network sockets, running external programs, registering object finalizers, constructing reference
weakly held by the garbage collector and others.

See [Rho09] for a generic function interface to the native JVM contract for java.util.List.

4.3. EXTENSIONS 29

— Function: compile-file-if-needed [extensions] input-file &rest allargs &key force-compile
&allow-other-keys

not-documented

— Variable: most-positive-java-long [extensions]

not-documented

— Function: dump-java-stack [extensions]

not-documented

— Function: memql [extensions] item list

not-documented

— Variable: double-float-negative-infinity [extensions]

not-documented

— Function: grovel-java-definitions [extensions]

not-documented

— Variable: *autoload-verbose* [extensions]

not-documented

— Function: make-slime-input-stream [extensions] function output-stream

not-documented

— Function: url-pathname-fragment [extensions] p

not-documented

— Function: process-kill [extensions] process

Kills the process.

— Class: nil-vector [extensions]

not-documented

— Function: source-pathname [extensions]

not-documented

— Function: uri-decode [extensions]

not-documented

— Function: simple-string-fill [extensions]

not-documented

— Function: memq [extensions] item list

not-documented

— Function: url-pathname-scheme [extensions] p

not-documented

30 CHAPTER 4. IMPLEMENTATION DEPENDENT EXTENSIONS

— Special Operator: truly-the [extensions]

not-documented

— Macro: %cdr [extensions]

not-documented

— Class: slime-input-stream [extensions]

not-documented

— Function: make-socket [extensions] host port

not-documented

— Variable: *enable-inline-expansion* [extensions]

not-documented

— Function: process-input [extensions]

not-documented

— Class: mailbox [extensions]

not-documented

— Function: string-position [extensions]

not-documented

— Function: precompile [extensions] name &optional definition

not-documented

— Variable: *suppress-compiler-warnings* [extensions]

not-documented

— Class: process [extensions]

not-documented

— Macro: %caddr [extensions]

not-documented

— Function: simple-search [extensions] sequence1 sequence2

not-documented

— Variable: *lisp-home* [extensions]

not-documented

— Variable: *command-line-argument-list* [extensions]

not-documented

— Function: file-directory-p [extensions]

not-documented

4.3. EXTENSIONS 31

— Function: make-dialog-prompt-stream [extensions]

not-documented

— Function: classp [extensions]

not-documented

— Variable: *disassembler* [extensions]

not-documented

— Function: set-floating-point-modes [extensions] &key traps

not-documented

— Variable: *debug-condition* [extensions]

not-documented

— Function: exit [extensions] &key status

not-documented

— Function: process-error [extensions]

not-documented

— Function: socket-local-port [extensions] socket

Returns the local port number of the given socket.

— Function: process-alive-p [extensions] process

Return t if process is still alive, nil otherwise.

— Variable: *inspector-hook* [extensions]

not-documented

— Variable: *require-stack-frame* [extensions]

not-documented

— Function: probe-directory [extensions]

not-documented

— Function: char-to-utf8 [extensions]

not-documented

— Function: autoload [extensions]

not-documented

— Class: mutex [extensions]

not-documented

— Function: uri-encode [extensions]

not-documented

32 CHAPTER 4. IMPLEMENTATION DEPENDENT EXTENSIONS

— Function: autoload-macro [extensions]

not-documented

— Function: socket-close [extensions] socket

not-documented

— Function: uptime [extensions]

not-documented

— Variable: *ed-functions* [extensions]

not-documented

— Function: compile-system [extensions] &key quit (zip t) output-path

not-documented

— Variable: *load-truename-fasl* [extensions]

not-documented

— Function: special-variable-p [extensions]

not-documented

— Function: socket-accept [extensions] socket

not-documented

— Variable: *warn-on-redefinition* [extensions]

not-documented

— Function: url-pathname-authority [extensions] p

not-documented

— Function: autoloadp [extensions] symbol

not-documented

— Function: make-weak-reference [extensions] obj

not-documented

— Function: resolve [extensions] symbol

not-documented

— Function: cancel-finalization [extensions] object

not-documented

— Function: make-slime-output-stream [extensions] function

not-documented

4.3. EXTENSIONS 33

— Function: run-program [extensions] program args &key environment (wait t)

Creates a new process running the the PROGRAM. ARGS are a list of
strings to be passed to the program as arguments.

For no arguments, use nil which means that just the name of the pro-
gram is passed as arg 0.

Returns a process structure containing the JAVA-OBJECT wrapped
Process object, and the PROCESS-INPUT, PROCESS-OUTPUT, and PROCESS-
ERROR streams.

c.f. http://download.oracle.com/javase/6/docs/api/java/lang/Process.html
Notes about Unix environments (as in the :environment):
* The ABCL implementation of run-program, like SBCL, Perl and many

other programs, copies the Unix environment by default.
* Running Unix programs from a setuid process, or in any other situ-

ation where the Unix environment is under the control of someone else, is
a mother lode of security problems. If you are contemplating doing this,
read about it first. (The Perl community has a lot of good documentation
about this and other security issues in script-like programs.)

The &key arguments have the following meanings:
:environment An alist of STRINGs (name . value) describing the new

environment. The default is to copy the environment of the current process.
:wait If non-NIL, which is the default, wait until the created process

finishes. If NIL, continue running Lisp until the program finishes.

— Function: fixnump [extensions]

not-documented

— Variable: single-float-negative-infinity [extensions]

not-documented

— Function: quit [extensions] &key status

not-documented

— Function: internal-compiler-error [extensions] format-control &rest format-arguments

not-documented

— Class: jar-pathname [extensions]

not-documented

NIL

— Function: simple-string-search [extensions]

not-documented

— Function: assql [extensions]

not-documented

— Function: finalize [extensions] object function

not-documented

— Function: run-shell-command [extensions] command &key directory (output *standard-
output*)

not-documented

34 CHAPTER 4. IMPLEMENTATION DEPENDENT EXTENSIONS

— Variable: *saved-backtrace* [extensions]

not-documented

— Macro: %car [extensions]

not-documented

— Macro: collect [extensions]

not-documented

— Function: arglist [extensions] extended-function-designator

not-documented

— Function: adjoin-eql [extensions] item list

not-documented

— Function: charpos [extensions] stream

not-documented

— Function: make-temp-file [extensions]

not-documented

— Function: describe-compiler-policy [extensions]

not-documented

— Variable: *print-structure* [extensions]

not-documented

— Function: socket-peer-address [extensions] socket

Returns the peer address of the given socket as a dotted quad string.

— Function: gc [extensions]

not-documented

— Function: getenv [extensions] variable

Return the value of the environment VARIABLE if it exists, otherwise
return NIL.

— Function: server-socket-close [extensions] socket

not-documented

— Class: weak-reference [extensions]

not-documented

— Function: get-floating-point-modes [extensions]

not-documented

— Function: weak-reference-value [extensions] obj

Returns two values, the first being the value of the weak ref,the second T
if the reference is valid, or NIL if it hasbeen cleared.

4.3. EXTENSIONS 35

— Variable: single-float-positive-infinity [extensions]

not-documented

— Function: featurep [extensions] form

not-documented

— Macro: %cadr [extensions]

not-documented

— Function: pathname-url-p [extensions] pathname

Predicate for whether PATHNAME references a URL.

— Function: string-input-stream-current [extensions] stream

not-documented

— Function: make-server-socket [extensions] port

not-documented

— Function: interrupt-lisp [extensions]

not-documented

— Macro: aver [extensions]

not-documented

— Function: init-gui [extensions]

Dummy function used to autoload this file

— Function: url-pathname-query [extensions] p

not-documented

— Function: process-exit-code [extensions] instance

The exit code of a process.

— Function: source-file-position [extensions]

not-documented

— Function: socket-peer-port [extensions] socket

Returns the peer port number of the given socket.

— Function: assq [extensions]

not-documented

— Function: source [extensions]

not-documented

— Function: socket-local-address [extensions] socket

Returns the local address of the given socket as a dotted quad string.

36 CHAPTER 4. IMPLEMENTATION DEPENDENT EXTENSIONS

— Function: neq [extensions] obj1 obj2

not-documented

— Function: string-find [extensions] char string

not-documented

— Function: pathname-jar-p [extensions]

not-documented

— Function: process-wait [extensions] process

Wait for process to quit running for some reason.

— Function: show-restarts [extensions] restarts stream

not-documented

— Variable: *batch-mode* [extensions]

not-documented

— Function: process-p [extensions] object

not-documented

— Variable: *gui-backend* [extensions]

not-documented

— Variable: double-float-positive-infinity [extensions]

not-documented

— Function: style-warn [extensions] format-control &rest format-arguments

not-documented

— Variable: most-negative-java-long [extensions]

not-documented

— Class: slime-output-stream [extensions]

not-documented

— Function: get-socket-stream [extensions] socket &key (element-type (quote character))
(external-format default)

:ELEMENT-TYPE must be CHARACTER or (UNSIGNED-BYTE 8); the
default is CHARACTER. EXTERNAL-FORMAT must be of the same
format as specified for OPEN.

— Function: process-output [extensions]

not-documented

— Class: url-pathname [extensions]

not-documented

4.3. EXTENSIONS 37

— Class: compiler-unsupported-feature-error [extensions]

not-documented

— Variable: *debug-level* [extensions]

not-documented

— Function: compiler-error [extensions] format-control &rest format-arguments

not-documented

— Function: macroexpand-all [extensions] form &optional env

not-documented

38 CHAPTER 4. IMPLEMENTATION DEPENDENT EXTENSIONS

Chapter 5

Beyond ANSI

Naturally, in striving to be a useful contemporary Common Lisp implementation, ABCL endeav-
ors to include extensions beyond the ANSI specification which are either widely adopted or are
especially useful in working with the hosting JVM.

5.1 Compiler to Java 5 Bytecode

The CL:COMPILE-FILE interface emits a packed fasl format whose Pathname has the type “abcl”.
These fasls are operating system neutral byte archives packaged by the zip compression format
which contain artifacts whose loading CL:LOAD understands.

5.2 Pathname

We implement an extension to the CL:PATHNAME that allows for the description and retrieval of
resources named in a URI 1 scheme that the JVM “understands”. By definition, support is
built-in into the JVM to access the “http” and “https” schemes but additional protocol handlers
may be installed at runtime by having JVM symbols present in the sun.net.protocol.dynamic

package. See [Mas00] for more details.
ABCL has created specializations of the ANSI CL:PATHNAME object to enable to use of URIs

to address dynamically loaded resources for the JVM. The EXT:URL-PATHNAME specialization has
a corresponding URI whose canonical representation is defined to be the NAMESTRING of the
CL:PATHNAME. The EXT:JAR-PATHNAME extension further specializes the the EXT:URL-PATHNAME to
provide access to components of zip archives.

@prefix ext: <http://abcl.not.org/cl-packages/extensions/> .

@prefix cl: <http://abcl.not.org/cl-packages/common-lisp/> .

<ext:jar-pathname> a <ext:url-pathname>.

<ext:url-pathname> a <cl:pathname>.

<cl:logical-pathname> a <cl:pathname> .

Both the EXT:URL-PATHNAME and EXT:JAR-PATHNAME objects may be used anywhere a CL:PATHNAME
is accepted with the following caveats:

• A stream obtained via CL:OPEN on a CL:URL-PATHNAME cannot be the target of write oper-
ations.

1A URI is essentially a superset of what is commonly understood as a URL We sometime suse the term URL
as shorthand in describing the URL Pathnames, even though the corresponding encoding is more akin to a URI as
described in RFC3986 [BLFM05].

39

40 CHAPTER 5. BEYOND ANSI

• Any results of canonicalization procedures performed on the underlying URI are discarded
between resolutions (i.e. the implementation does not attempt to cache the results of current
name resolution of the representing resource unless it is requested to be resolved.) Upon
resolution, any canonicalization procedures followed in resolving the resource (e.g. following
redirects) are discarded. Users may programatically initiate a new, local computation of the
resolution of the resource by applying the CL:TRUENAME function to a EXT:URL-PATHNAME

object. Depending on the reliability and properties of your local REST infrastructure, these
results may not necessarily be idempotent over time2.

The implementation of EXT:URL-PATHNAME allows the ABCL user to dynamically load code
from the network. For example, Quicklisp ([Bea]) may be completely installed from the REPL
as the single form:

CL-USER > (load "http :// beta.quicklisp.org/quicklisp.lisp")

will load and execute the Quicklisp setup code.

The implementation currently breaks ANSI conformance by allowing the types able to be
CL:READ for the DEVICE to return a possible CONS of CL:PATHNAME objects.

In order to “smooth over” the bit about types being CL:READ from CL:PATHNAME components,
we extend the semantics for the usual PATHNAME merge semantics when *DEFAULT-PATHNAME-DEFAULTS*

contains a EXT:JAR-PATHNAME with the “do what I mean” algorithm described in 1.1 on page 5.

Implementation

The implementation of these extensions stores all the additional information in the CL:PATHNAME

object itself in ways that while strictly speaking are conformant, nonetheless may trip up libraries
that don’t expect the following:

• DEVICE can be either a string denoting a drive letter under DOS or a list of exactly one
or two elements. If DEVICE is a list, it denotes a EXT:JAR-PATHNAME, with the entries
containing CL:PATHNAME objects which describe the outer and (possibly inner) locations of
the jar archive 3.

• A EXT:URL-PATHNAME always has a HOST component that is a property list. The values of
the HOST property list are always character strings. The allowed keys have the following
meanings:

:SCHEME Scheme of URI (”http”, ”ftp”, ”bundle”, etc.)

:AUTHORITY Valid authority according to the URI scheme. For ”http” this could be
”example.org:8080”.

:QUERY The query of the URI

:FRAGMENT The fragment portion of the URI

• In order to encapsulate the implementation decisions for these meanings, the following func-
tions provide a SETF-able API for reading and writing such values: URL-PATHNAME-QUERY,
URL-PATHNAME-FRAGMENT, URL-PATHNAME-AUTHORITY, and URL-PATHNAME-SCHEME. The spe-
cific subtype of a Pathname may be determined with the predicates PATHNAME-URL-P and
PATHNAME-JAR-P.

2See [?] for the draft of the publication of the technical details
3The case of inner and outer EXT:JAR-PATHNAME ?? arises when zip archives themselves contain zip archives

which is the case when the ABCL fasl is included in the abcl.jar zip archive.

5.3. PACKAGE-LOCAL NICKNAMES 41

5.3 Package-Local Nicknames

ABCL allows giving packages local nicknames: they allow short and easy-to-use names to be used
without fear of name conflict associated with normal nicknames.4

A local nickname is valid only when inside the package for which it has been specified. Different
packages can use same local nickname for different global names, or different local nickname for
same global name.

Symbol :package-local-nicknames in *features* denotes the support for this feature.

The options to defpackage are extended with a new option :local-nicknames (local-nickname

actual-package-name)*.

The new package has the specified local nicknames for the corresponding actual packages.

Example:

(defpackage :bar (: intern "X"))

(defpackage :foo (: intern "X"))

(defpackage :quux (:use :cl)

(: local-nicknames (:bar :foo) (:foo :bar)))

(find-symbol "X" :foo) ; => FOO::X

(find-symbol "X" :bar) ; => BAR::X

(let ((* package* (find-package :quux)))

(find-symbol "X" :foo)) ; => BAR::X

(let ((* package* (find-package :quux)))

(find-symbol "X" :bar)) ; => FOO::X

— Function: package-local-nicknames [ext] package-designator

Returns an ALIST of (local-nickname . actual-package) describing
the nicknames local to the designated package.

When in the designated package, calls to find-package with any of the
local-nicknames will return the corresponding actual-package instead. This
also affects all implied calls to find-package, including those performed
by the reader.

When printing a package prefix for a symbol with a package local nick-
name, the local nickname is used instead of the real name in order to
preserve print-read consistency.

— Function: package-locally-nicknamed-by-list [ext] package-designator

Returns a list of packages which have a local nickname for the designated
package.

— Function: add-package-local-nickname [ext] local-nickname actual-package &optional
package-designator

Adds local-nickname for actual-package in the designated package, de-
faulting to current package. local-nickname must be a string designator,
and actual-package must be a package designator.

Returns the designated package.

Signals an error if local-nickname is already a package local nickname
for a different package, or if local-nickname is one of ”CL”, ”COMMON-
LISP”, or, ”KEYWORD”, or if local-nickname is a global name or nick-
name for the package to which the nickname would be added.

When in the designated package, calls to find-package with the local-nickname
will return the package the designated actual-package instead. This also
affects all implied calls to find-package, including those performed by the
reader.

4Package-local nicknames were originally developed in SBCL.

42 CHAPTER 5. BEYOND ANSI

When printing a package prefix for a symbol with a package local nick-
name, local nickname is used instead of the real name in order to preserve
print-read consistency.

— Function: remove-package-local-nickname [ext] old-nickname &optional package-designator

If the designated package had old-nickname as a local nickname for an-
other package, it is removed. Returns true if the nickname existed and was
removed, and nil otherwise.

5.4 Extensible Sequences

See Rhodes2007 [Rho09] for the design.
The SEQUENCE package fully implements Christopher Rhodes’ proposal for extensible se-

quences. These user extensible sequences are used directly in java-collections.lisp provide
these CLOS abstractions on the standard Java collection classes as defined by the java.util.List
contract.

This extension is not automatically loaded by the implementation. It may be loaded via:

CL-USER > (require ’java-collections)

if both extensible sequences and their application to Java collections is required, or

CL-USER > (require ’extensible-sequences)

if only the extensible sequences API as specified in [Rho09] is required.
Note that (require ’java-collections) must be issued before java.util.List or any sub-

class is used as a specializer in a CLOS method definition (see the section below).

5.5 Extensions to CLOS

5.5.1 Metaobject Protocol

ABCL implements the metaobject protocol for CLOS as specified in (A)MOP. The symbols are
exported from the package MOP.

Contrary to the AMOP specification and following SBCL’s lead, the metaclass funcallable-standard-object
has funcallable-standard-class as metaclass instead of standard-class.

5.5.2 Specializing on Java classes

There is an additional syntax for specializing the parameter of a generic function on a java class,
viz. (java:jclass CLASS-STRING) where CLASS-STRING is a string naming a Java class in dotted
package form.

For instance the following specialization would perhaps allow one to print more information
about the contents of a java.util.Collection object

(defmethod print-object ((coll (java:jclass "java.util.Collection"))

stream)

;;; ...

)

If the class had been loaded via a classloader other than the original the class you wish to
specialize on, one needs to specify the classloader as an optional third argument.

(defparameter *other-classloader*

(jcall "getBaseLoader" cl-user ::* classpath-manager *))

5.6. EXTENSIONS TO THE READER 43

(defmethod print-object

((device-id (java:jclass "dto.nbi.service.hdm.alcatel.com.NBIDeviceID"

*other-classloader *))

stream)

;;; ...

)

5.6 Extensions to the Reader

We implement a special hexadecimal escape sequence for specifying 32 bit characters to the Lisp
reader5, namely we allow a sequences of the form #\Uxxxx to be processed by the reader as
character whose code is specified by the hexadecimal digits xxxx. The hexadecimal sequence may
be one to four digits long.

Note that this sequence is never output by the implementation. Instead, the corresponding
Unicode character is output for characters whose code is greater than 0x00ff.

5.7 Overloading of the CL:REQUIRE Mechanism

The CL:REQUIRE mechanism is overloaded by attaching the following semantic to the execution of
REQUIRE on the following symbols:

ASDF Loads the ASDF implementation shipped with the implementation. After ASDF has been
loaded in this manner, symbols passed to CL:REQUIRE which are otherwise unresolved, are
passed to ASDF for a chance for resolution. This means, for instance if CL-PPCRE can be lo-
cated as a loadable ASDF system (require ’cl-ppcre) is equivalent to (asdf:load-system
’cl-ppcre).

ABCL-CONTRIB Locates and pushes the toplevel contents of “abcl-contrib.jar” into the ASDF
central registry.

1. abcl-asdf Functions for loading JVM artifacts dynamically, hooking into ASDF 2
objects where possible.

2. asdf-jar Package addressable JVM artifacts via abcl-asdf descriptions as a single
binary artifact including recursive dependencies.

3. mvn These systems name common JVM artifacts from the distributed pom.xml graph
of Maven Aether:

(a) jna Dynamically load ’jna.jar’ version 3.5.1 from the network 6

4. quicklisp-abcl Boot a local Quicklisp installation via the ASDF:IRI type introduced
bia ABCL-ASDF.

CL-USER > (asdf:load-system :quicklisp-abcl :force t)

The user may extend the CL:REQUIRE mechanism by pushing function hooks into SYSTEM:*MODULE-PROVIDER-FUNCTIONS*.
Each such hook function takes a single argument containing the symbol passed to CL:REQUIRE

and returns a non-NIL value if it can successful resolve the symbol.

5This represents a compromise with contemporary in 2011 32bit hosting architecures for which we wish to make
text processing efficient. Should the User require more control over UNICODE processing we recommend Edi
Weisz’ excellent work with —FLEXI-STREAMS which we fully support

6This loading can be inhibited if, at runtime, the Java class corresponding “:classname” clause of the system
defition is present.

44 CHAPTER 5. BEYOND ANSI

5.8 JSS extension of the Reader by SHARPSIGN-DOUBLE-
QUOTE

The JSS contrib consitutes an additional, optional extension to the reader in the definition of the
SHARPSIGN-DOUBLE-QUOTE (“#’̈’) reader macro. See section 6.3 on page 46 for more information.

5.9 ASDF

asdf-3.1.0.49 (see [RBRK]) is packaged as core component of ABCL, but not initialized by default,
as it relies on the CLOS subsystem which can take a bit of time to start 7. The packaged ASDF
may be loaded by the ANSI REQUIRE mechanism as follows:

CL-USER > (require ’asdf)

7While this time is “merely” on the order of seconds for contemporary 2011 machines, for applications that need
to initialize quickly, for example a web server, this time might be unnecessarily long

Chapter 6

Contrib

The ABCL contrib is packaged as a separate jar archive usually named abcl-contrib.jar or
possibly something like abcl-contrib-1.3.0.jar. The contrib jar is not loaded by the imple-
mentation by default, and must be first intialized by the REQUIRE mechanism before using any
specific contrib:

CL-USER > (require ’abcl-contrib)

6.1 abcl-asdf

This contrib enables an additional syntax for ASDF system definition which dynamically loads
JVM artifacts such as jar archives via encapsulation of the Maven build tool. The Maven Aether
component can also be directly manipulated by the function associated with the ABCL-ASDF:RESOLVE-DEPENDENCIES
symbol.

When loaded, abcl-asdf adds the following objects to ASDF: JAR-FILE, JAR-DIRECTORY,
CLASS-FILE-DIRECTORY and MVN, exporting them (and others) as public symbols.

6.1.1 Referencing Maven Artifacts via ASDF

Maven artifacts may be referenced within ASDF system definitions, as the following example ref-
erences the log4j-1.4.9.jar JVM artifact which provides a widely-used abstraction for handling
logging systems:

;;;; -*- Mode: LISP -*-

(in-package :asdf)

(defsystem :log4j

:components ((:mvn "log4j/log4j" :version "1.4.9")))

6.1.2 API

We define an API for ABCL-ASDF as consisting of the following ASDF classes:
JAR-DIRECTORY, JAR-FILE, and CLASS-FILE-DIRECTORY for JVM artifacts that have a cur-

rently valid pathname representation.
Both the MVN and IRI classes descend from ASDF-COMPONENT, but do not directly have

a filesystem location.
For use outside of ASDF system definitions, we currently define one method, ABCL-ASDF:RESOLVE-DEPENDENCIES

which locates, downloads, caches, and then loads into the currently executing JVM process all re-
cursive dependencies annotated in the Maven pom.xml graph.

45

46 CHAPTER 6. CONTRIB

6.1.3 Directly Instructing Maven to Download JVM Artifacts

Bypassing ASDF, one can directly issue requests for the Maven artifacts to be downloaded

CL-USER > (abcl-asdf:resolve-dependencies "com.google.gwt"

"gwt-user")

WARNING: Using LATEST for unspecified version.

"/Users/evenson /.m2/repository/com/google/gwt/gwt-user /2.4.0- rc1

/gwt-user-2 .4.0- rc1.jar:/Users/evenson /.m2/repository/javax/vali

dation/validation-api /1.0.0. GA/validation-api-1 .0.0.GA.jar:/User

s/evenson /.m2/repository/javax/validation/validation-api /1.0.0.G

A/validation-api-1 .0.0. GA-sources.jar"

To actually load the dependency, use the JAVA:ADD-TO-CLASSPATH generic function:

CL-USER > (java:add-to-classpath

(abcl-asdf:resolve-dependencies "com.google.gwt"

"gwt-user"))

Notice that all recursive dependencies have been located and installed locally from the network
as well.

More extensive documentations and examples can be found at http://abcl.org/svn/tags/

1.3.0/contrib/abcl-asdf/README.markdown.

6.2 asdf-jar

The asdf-jar contrib provides a system for packaging ASDF systems into jar archives for ABCL.
Given a running ABCL image with loadable ASDF systems the code in this package will recur-
sively package all the required source and fasls in a jar archive.

The documentation for this contrib can be found at http://abcl.org/svn/tags/1.3.0/

abcl-contrib/asdf-jar/README.markdown.

6.3 jss

To one used to the more universal syntax of Lisp pairs upon which the definition of read and
compile time macros is quite natural 1, the Java syntax available to the Java programmer may be
said to suck. To alleviate this situation, the JSS contrib introduces the SHARPSIGN-DOUBLE-QUOTE

(#") reader macro, which allows the the specification of the name of invoking function as the first
element of the relevant s-expr which tends to be more congruent to how Lisp programmers seem
to be wired to think.

While quite useful, we don’t expect that the JSS contrib will be the last experiment in wrangling
Java from Common Lisp.

6.3.1 JSS usage

Example:

CL-USER > (require ’abcl-contrib)

==> ("ABCL-CONTRIB")

CL-USER > (require ’jss)

==> ("JSS")

CL-USER) (#"getProperties" ’java.lang.System)

==> #<java.util.Properties {java.runtime.name=Java {2 FA21ACF}>

CL-USER) (#"propertyNames" (#"getProperties" ’java.lang.System))

==> #<java.util.Hashtable$Enumerator java.util.Has {36 B4361A}>

1See Graham’s “On Lisp” http://lib.store.yahoo.net/lib/paulgraham/onlisp.pdf.

http://abcl.org/svn/tags/1.3.0/contrib/abcl-asdf/README.markdown
http://abcl.org/svn/tags/1.3.0/contrib/abcl-asdf/README.markdown
http://abcl.org/svn/tags/1.3.0/abcl-contrib/asdf-jar/README.markdown
http://abcl.org/svn/tags/1.3.0/abcl-contrib/asdf-jar/README.markdown

6.4. JFLI 47

Some more information on jss can be found in its documentation at http://abcl.org/svn/

tags/1.3.0/contrib/jss/README.markdown

6.4 jfli

The contrib contains a pure-Java version of JFLI.
http://abcl.org/svn/tags/1.3.0/contrib/jfli/README.

6.5 asdf-install

The asdf-install contrib provides an implementation of ASDF-INSTALL. Superseded by Quicklisp
(see Xach2011 [Bea]).

The require of the asdf-install symbol has the side effect of pushing the directory ~/.asdf-install-dir/systems/

into the value of the ASDF central registry in asdf:*central-registry*, providing a convenient
mechanism for stashing ABCL specific system definitions for convenient access.

http://abcl.org/tags/1.3.0/contrib/asdf-install/README.

http://abcl.org/svn/tags/1.3.0/contrib/jss/README.markdown
http://abcl.org/svn/tags/1.3.0/contrib/jss/README.markdown
http://abcl.org/svn/tags/1.3.0/contrib/jfli/README
http://abcl.org/tags/1.3.0/contrib/asdf-install/README

48 CHAPTER 6. CONTRIB

Chapter 7

History

ABCL was originally the extension language for the J editor, which was started in 1998 by Peter
Graves. Sometime in 2003, a whole lot of code that had previously not been released publically
was suddenly committed that enabled ABCL to be plausibly termed an emergent ANSI Common
Lisp implementation candidate.

From 2006 to 2008, Peter manned the development lists, incorporating patches as made sense.
After a suitable search, Peter nominated Erik Hülsmann to take over the project.

In 2008, the implementation was transferred to the current maintainers, who have strived to
improve its usability as a contemporary Common Lisp implementation.

On October 22, 2011, with the publication of this Manual explicitly stating the conformance
of Armed Bear Common Lisp to ANSI, we released abcl-1.0.0. We released abcl-1.0.1 as a main-
tainence release on January 10, 2012.

In December 2012, we revised the implementation by adding (A)MOP with the release of
abcl-1.1.0. We released abcl-1.1.1 as a maintainence release on Feburary 14, 2013.

At the beginning of June 2013, we enhanced the stability of the implementation with the release
of abcl-1.2.1.

In January 2014, we introduced the Third Edition of the implementation with abcl-1.3.0.

49

50 CHAPTER 7. HISTORY

Appendix A

The MOP Dictionary

51

52 APPENDIX A. THE MOP DICTIONARY

— Class: specializer [mop]

not-documented

— Class: direct-slot-definition [mop]

not-documented

— Class: effective-slot-definition [mop]

not-documented

— Class: standard-direct-slot-definition [mop]

not-documented

— Generic Function: map-dependents [mop]

not-documented

— Generic Function: method-function [mop]

not-documented

— Generic Function: class-direct-subclasses [mop]

not-documented

— Generic Function: slot-definition-location [mop]

not-documented

— Class: standard-slot-definition [mop]

not-documented

— Class: standard-effective-slot-definition [mop]

not-documented

— Generic Function: slot-definition-allocation [mop]

not-documented

— Function: funcallable-standard-instance-access [mop] instance location

not-documented

— Generic Function: direct-slot-definition-class [mop]

not-documented

— Generic Function: class-direct-slots [mop]

not-documented

— Generic Function: compute-class-precedence-list [mop]

not-documented

— Function: extract-specializer-names [mop] specialized-lambda-list

not-documented

53

— Generic Function: generic-function-methods [mop]

not-documented

— Generic Function: class-default-initargs [mop]

not-documented

— Generic Function: class-precedence-list [mop]

not-documented

— Function: standard-instance-access [system] instance location

not-documented

— Function: set-funcallable-instance-function [mop] funcallable-instance function

not-documented

— Generic Function: generic-function-declarations [mop]

not-documented

— Generic Function: ensure-generic-function-using-class [mop]

not-documented

— Function: eql-specializer-object [mop] eql-specializer

not-documented

— Generic Function: ensure-class-using-class [mop]

not-documented

— Generic Function: slot-definition-readers [mop]

not-documented

— Generic Function: compute-discriminating-function [mop]

not-documented

— Generic Function: find-method-combination [mop]

not-documented

— Generic Function: remove-direct-method [mop]

not-documented

— Generic Function: remove-dependent [mop]

not-documented

— Class: standard-accessor-method [mop]

not-documented

— Generic Function: slot-definition-initform [mop]

not-documented

54 APPENDIX A. THE MOP DICTIONARY

— Generic Function: writer-method-class [mop]

not-documented

— Function: extract-lambda-list [mop] specialized-lambda-list

not-documented

— Generic Function: method-lambda-list [mop]

not-documented

— Generic Function: method-specializers [mop]

not-documented

— Generic Function: add-dependent [mop]

not-documented

— Generic Function: update-dependent [mop]

not-documented

— Class: slot-definition [system]

not-documented

— Generic Function: class-finalized-p [mop]

not-documented

— Function: intern-eql-specializer [mop] object

not-documented

— Class: standard-reader-method [mop]

not-documented

— Generic Function: compute-effective-method [mop]

not-documented

— Generic Function: generic-function-lambda-list [mop]

not-documented

— Generic Function: method-qualifiers [common-lisp]

not-documented

— Generic Function: validate-superclass [mop]

This generic function is called to determine whether the class superclass is
suitable for use as a superclass of class.

— Generic Function: slot-definition-type [mop]

not-documented

— Generic Function: accessor-method-slot-definition [mop]

not-documented

55

— Generic Function: effective-slot-definition-class [mop]

not-documented

— Generic Function: slot-definition-writers [mop]

not-documented

— Generic Function: slot-value-using-class [mop]

not-documented

— Generic Function: method-generic-function [mop]

not-documented

— Generic Function: specializer-direct-methods [mop]

not-documented

— Generic Function: class-prototype [mop]

not-documented

— Class: standard-writer-method [mop]

not-documented

— Generic Function: class-direct-default-initargs [mop]

not-documented

— Class: funcallable-standard-class [mop]

not-documented

— Generic Function: specializer-direct-generic-functions [mop]

not-documented

— Generic Function: slot-boundp-using-class [mop]

not-documented

— Generic Function: compute-default-initargs [mop]

not-documented

— Class: forward-referenced-class [system]

not-documented

— Generic Function: generic-function-method-combination [mop]

not-documented

— Generic Function: compute-applicable-methods-using-classes [mop]

not-documented

— Class: metaobject [mop]

not-documented

56 APPENDIX A. THE MOP DICTIONARY

— Function: canonicalize-direct-superclasses [mop] direct-superclasses

not-documented

— Generic Function: add-direct-subclass [mop]

not-documented

— Function: ensure-class [mop] name &rest all-keys &key &allow-other-keys

not-documented

— Generic Function: generic-function-method-class [mop]

not-documented

— Function: %defgeneric [mop] function-name &rest all-keys

not-documented

— Class: eql-specializer [mop]

not-documented

— Generic Function: reader-method-class [mop]

not-documented

— Generic Function: slot-definition-name [mop]

not-documented

— Generic Function: slot-makunbound-using-class [mop]

not-documented

— Generic Function: add-direct-method [mop]

not-documented

— Generic Function: make-method-lambda [mop]

not-documented

— Generic Function: compute-applicable-methods [common-lisp]

not-documented

— Generic Function: slot-definition-initfunction [mop]

not-documented

— Generic Function: compute-effective-slot-definition [mop]

not-documented

— Generic Function: generic-function-argument-precedence-order [mop]

not-documented

— Generic Function: generic-function-name [mop]

not-documented

57

— Generic Function: remove-direct-subclass [mop]

not-documented

— Generic Function: class-direct-superclasses [mop]

not-documented

— Generic Function: compute-slots [mop]

not-documented

— Class: standard-method [common-lisp]

not-documented

— Generic Function: finalize-inheritance [mop]

not-documented

— Generic Function: class-slots [mop]

not-documented

— Generic Function: slot-definition-initargs [mop]

not-documented

— Class: funcallable-standard-object [mop]

not-documented

58 APPENDIX A. THE MOP DICTIONARY

Appendix B

The SYSTEM Dictionary

The public interfaces in this package are subject to change with ABCL 1.4.

59

60 APPENDIX B. THE SYSTEM DICTIONARY

— Function: logical-pathname-p [system] object

Returns true if OBJECT is of type logical-pathname; otherwise, returns
false.

— Function: %slot-definition-readers [system] slot-definition

not-documented

— Function: compiler-macroexpand [system] form &optional env

not-documented

— Function: set-generic-function-initial-methods [system]

not-documented

— Function: set-slot-definition-readers [system] slot-definition readers

not-documented

— Function: set-slot-definition-initform [system] slot-definition initform

not-documented

— Function: generic-function-documentation [system]

not-documented

— Function: %nstring-capitalize [system]

not-documented

— Function: %class-finalized-p [system]

not-documented

— Function: environment-add-macro-definition [system] environment name expander

not-documented

— Function: lambda-name [system]

not-documented

— Function: std-slot-value [system] instance slot-name

not-documented

— Function: std-instance-class [system]

not-documented

— Function: make-slot-definition [system] &optional class

Cannot be called with user-defined subclasses of standard-slot-definition.

— Function: write-vector-unsigned-byte-8 [system] vector stream start end

not-documented

— Function: notinline-p [system] name

not-documented

61

— Function: vector-delete-eql [system] item vector

not-documented

— Function: package-symbols [system]

not-documented

— Function: %set-class-direct-subclasses [system] class direct-subclasses

not-documented

— Macro: defconst [system]

not-documented

— Function: compile-file-if-needed [system] input-file &rest allargs &key force-compile &allow-
other-keys

not-documented

— Function: puthash [system] key hash-table new-value &optional default

not-documented

— Function: structure-set [system] instance index new-value

not-documented

— Function: make-layout [system] class instance-slots class-slots

not-documented

— Function: %string/= [system]

not-documented

— Function: delete-eq [system] item sequence

not-documented

— Function: single-float-bits [system] float

not-documented

— Variable: +keyword-package+ [system]

not-documented

— Function: process-kill [system] process

not-documented

— Function: layout-length [system] layout

not-documented

— Class: environment [system]

not-documented

— Function: %generic-function-method-class [system]

not-documented

62 APPENDIX B. THE SYSTEM DICTIONARY

— Function: list-delete-eql [system] item list

not-documented

— Function: aset [system] array subscripts new-element

not-documented

— Variable: *compile-file-type* [system]

not-documented

— Variable: +cl-package+ [system]

not-documented

— Function: %class-direct-subclasses [system]

not-documented

— Function: gf-required-args [system]

not-documented

— Function: set-schar [system] string index character

not-documented

— Function: make-fill-pointer-output-stream [system]

not-documented

— Function: %string-capitalize [system]

not-documented

— Function: inline-expansion [system] name

not-documented

— Variable: *source-position* [system]

not-documented

— Function: symbol-macro-p [system] value

not-documented

— Function: double-float-high-bits [system] float

not-documented

— Variable: +fixnum-type+ [system]

not-documented

— Function: fdefinition-block-name [system] function-name

not-documented

— Function: expand-inline [system] form expansion

not-documented

63

— Function: function-result-type [system] name

not-documented

— Function: environment-add-symbol-binding [system] environment symbol value

not-documented

— Function: swap-slots [system] instance-1 instance-2

not-documented

— Function: %generic-function-methods [system]

not-documented

— Variable: *speed* [system]

not-documented

— Function: identity-hash-code [system]

not-documented

— Function: dump-form [system] form stream

not-documented

— Function: fixnum-type-p [system] compiler-type

not-documented

— Function: make-keyword [system] symbol

not-documented

— Function: make-environment [system] &optional parent-environment

not-documented

— Function: compiled-lisp-function-p [system] object

not-documented

— Function: list-directory [system] directory &optional (resolve-symlinks t)

Lists the contents of DIRECTORY, optionally resolving symbolic links.

— Function: make-file-stream [system] pathname namestring element-type direction if-exists
external-format

not-documented

— Function: compiler-subtypep [system] compiler-type typespec

not-documented

— Function: %putf [system] plist indicator new-value

not-documented

— Function: check-sequence-bounds [system] sequence start end

not-documented

64 APPENDIX B. THE SYSTEM DICTIONARY

— Function: %output-object [system]

not-documented

— Function: %set-class-direct-slots [system]

not-documented

— Function: set-car [system]

not-documented

— Function: %set-class-slots [system] class slot-definitions

not-documented

— Function: set-generic-function-argument-precedence-order [system]

not-documented

— Function: set-slot-definition-documentation [system] slot-definition documentation

not-documented

— Variable: *safety* [system]

not-documented

— Function: empty-environment-p [system] environment

not-documented

NIL

— Function: set-generic-function-documentation [system]

not-documented

— Function: %slot-definition-location [system] slot-definition

not-documented

— Function: remove-zip-cache-entry [system] pathname

not-documented

— Function: get-cached-emf [system] generic-function args

not-documented

— Function: %set-class-finalized-p [system]

not-documented

— Function: %string-not-lessp [system]

not-documented

— Function: %make-instances-obsolete [system] class

not-documented

— Function: ensure-input-stream [system] pathname

Returns a java.io.InputStream for resource denoted by PATHNAME.

65

— Function: %make-logical-pathname [system] namestring

not-documented

— Function: %set-find-class [system]

not-documented

— Variable: +false-type+ [system]

not-documented

— Function: process-input [system]

not-documented

— Function: set-slot-definition-initargs [system] slot-definition initargs

not-documented

— Function: make-structure [system]

not-documented

— Function: %slot-definition-allocation-class [system] slot-definition

not-documented

— Variable: *inline-declarations* [system]

not-documented

— Function: %class-default-initargs [system]

not-documented

— Function: standard-instance-access [system] instance location

not-documented

— Function: set-function-info-value [system] name indicator value

not-documented

— Function: precompile [extensions] name &optional definition

not-documented

— Function: %string-not-equal [system]

not-documented

— Function: sha256 [system] &rest paths-or-strings

not-documented

— Function: disable-zip-cache [system]

Disable all caching of ABCL FASLs and ZIPs.

— Function: std-slot-boundp [system] instance slot-name

not-documented

66 APPENDIX B. THE SYSTEM DICTIONARY

— Function: set-generic-function-method-class [system]

not-documented

— Function: %generic-function-method-combination [system]

not-documented

— Function: call-count [system]

not-documented

— Function: %slot-definition-allocation [system] slot-definition

not-documented

— Function: %allocate-funcallable-instance [system] class

not-documented

— Function: double-float-low-bits [system] float

not-documented

— Function: simple-search [system] sequence1 sequence2

not-documented

— Function: float-infinity-p [system]

not-documented

— Function: available-encodings [system]

Returns all charset encodings suitable for passing to a stream constructor
available at runtime.

— Function: %string-equal [system]

not-documented

— Function: %class-precedence-list [system]

not-documented

— Class: process [system]

not-documented

— Function: %make-list [system]

not-documented

— Function: %type-error [system] datum expected-type

not-documented

— Function: %stream-write-char [system] character output-stream

not-documented

— Function: %finalize-generic-function [system] generic-function

not-documented

NIL

67

— Function: built-in-function-p [system]

not-documented

— Variable: *compile-file-environment* [system]

not-documented

— Function: %string¡ [system]

not-documented

— Function: set-slot-definition-writers [system] slot-definition writers

not-documented

— Function: %init-eql-specializations [system] generic-function eql-specilizer-objects-list

not-documented

— Function: set-slot-definition-type [system] slot-definition type

not-documented

— Function: out-synonym-of [system] stream-designator

not-documented

— Function: note-name-defined [system] name

not-documented

— Function: integer-type-p [system] object

not-documented

— Function: structure-length [system] instance

not-documented

— Function: cache-emf [system] generic-function args emf

not-documented

— Function: hash-table-weakness [system] hash-table

Return weakness property of HASH-TABLE, or NIL if it has none.

— Function: float-overflow-mode [system] &optional boolean

not-documented

— Function: process-error [system]

not-documented

— Function: process-alive-p [system] process

Return t if process is still alive, nil otherwise.

— Function: %class-direct-default-initargs [system]

not-documented

68 APPENDIX B. THE SYSTEM DICTIONARY

— Function: make-double-float [system] bits

not-documented

— Function: set-generic-function-methods [system]

not-documented

— Function: layout-slot-index [system]

not-documented

— Function: %stream-terpri [system] output-stream

not-documented

— Function: %stream-output-object [system]

not-documented

— Function: interactive-eval [system]

not-documented

— Class: jar-stream [system]

not-documented

— Function: %slot-definition-name [system] slot-definition

not-documented

— Function: zip [system] pathname pathnames &optional topdir

Creates a zip archive at PATHNAME whose entries enumerated via the
list of PATHNAMES. If the optional TOPDIR argument is specified, the
archive will preserve the hierarchy of PATHNAMES relative to TOPDIR.
Without TOPDIR, there will be no sub-directories in the archive, i.e. it
will be flat.

— Function: %slot-definition-writers [system] slot-definition

not-documented

— Function: %generic-function-name [system]

not-documented

— Function: std-instance-layout [system]

not-documented

— Class: slot-definition [system]

not-documented

NIL

— Function: shrink-vector [system] vector new-size

not-documented

— Function: package-inherited-symbols [system]

not-documented

69

— Function: layout-class [system] layout

not-documented

— Function: %set-fill-pointer [system]

not-documented

— Function: %set-class-documentation [system]

not-documented

— Function: require-type [system] arg type

not-documented

— Function: %class-direct-slots [system]

not-documented

— Function: %class-direct-methods [system]

not-documented

— Function: setf-function-name-p [system] thing

not-documented

— Variable: *compiler-error-context* [system]

not-documented

— Function: make-integer-type [system] type

not-documented

— Function: integer-type-high [system]

not-documented

70 APPENDIX B. THE SYSTEM DICTIONARY

Appendix C

The JSS Dictionary

These public interfaces are provided by the JSS contrib.

71

72 APPENDIX C. THE JSS DICTIONARY

— Function: hashmap-to-hashtable [jss] hashmap &rest rest &key (keyfun (function iden-
tity)) (valfun (function identity)) (invert? NIL) table &allow-other-keys

Converts the a HASHMAP reference to a java.util.HashMap object to a
Lisp hashtable.

The REST paramter specifies arguments to the underlying MAKE-
HASH-TABLE call.

KEYFUN and VALFUN specifies functions to be run on the keys and
values of the HASHMAP right before they are placed in the hashtable.

If INVERT? is non-nil than reverse the keys and values in the resulting
hashtable.

— Function: find-java-class [jss] name

not-documented

— Macro: invoke-add-imports [jss]

not-documented

NIL

— Function: java-class-method-names [jss] class &optional stream

Return a list of the public methods encapsulated by the JVM CLASS.
If STREAM non-nil, output a verbose description to the named output

stream.
CLASS may either be a string naming a fully qualified JVM class in

dot notation, or a symbol resolved against all class entries in the current
classpath.

— Variable: *do-auto-imports* [jss]

Whether to automatically introspect all Java classes on the classpath when
JSS is loaded.

— Function: new [jss] class-name &rest args

Invoke the Java constructor for CLASS-NAME with ARGS.
CLASS-NAME may either be a symbol or a string according to the

usual JSS conventions.

— Function: list-to-list [jss] list

not-documented

— Function: jarray-to-list [jss] jarray

Convert the Java array named by JARRARY into a Lisp list.

— Function: set-to-list [jss] set

not-documented

— Function: set-java-field [jss] object field value &optional (try-harder *running-in-osgi*)

Set the FIELD of OBJECT to VALUE. If OBJECT is a symbol, it names
a dot qualified Java class to look for a static FIELD. If OBJECT is an
instance of java:java-object, the associated is used to look up the static
FIELD.

73

— Function: jclass-all-interfaces [jss] class

Return a list of interfaces the class implements

— Macro: with-constant-signature [jss]

not-documented

— Function: get-java-field [jss] object field &optional (try-harder *running-in-osgi*)

Get the value of the FIELD contained in OBJECT. If OBJECT is a symbol
it names a dot qualified static FIELD.

— Function: jlist-to-list [jss] list

Convert a LIST implementing java.util.List to a Lisp list.

— Function: iterable-to-list [jss] iterable

Return the items contained the java.lang.Iterable ITERABLE as a list.

— Variable: *cl-user-compatibility* [jss]

Whether backwards compatibility with JSS’s use of CL-USER has been
enabled.

— Function: jcmn [jss]

not-documented

— Function: classfiles-import [jss] directory

Load all Java classes recursively contained under DIRECTORY in the cur-
rent process.

— Function: japropos [jss] string

Output the names of all Java class names loaded in the current process
which match STRING..

— Function: vector-to-list [jss] vector

not-documented

NIL

— Function: invoke-restargs [jss] method object args &optional (raw? NIL)

not-documented

— Function: jar-import [jss] file

Import all the Java classes contained in the pathname FILE into the JSS
dynamic lookup cache.

— Function: ensure-compatibility [jss]

Ensure backwards compatibility with JSS’s use of CL-USER.

74 APPENDIX C. THE JSS DICTIONARY

Bibliography

[Bea] Zach Beane. Quicklisp. http://www.quicklisp.org/. Last accessed Jan 25, 2012.

[BLFM05] Tim Berners-Lee, Roy Fielding, and Larry Masinter. Rfc 3986: Uri generic syntax.
http://www.ietf.org/rfc/rfc3986.txt, 2005. Last accessed Feb 5, 2012.

[Gro06] Mike Grogan. Scripting for the Java platform. Final Draft Specification JSR-223, Sun
Microsystems, Inc., 2006. http://jcp.org/aboutJava/communityprocess/final/

jsr223/index.html.

[Mas00] Brian Maso. A new era for Java protocol handlers. http://java.sun.com/developer/
onlineTraining/protocolhandlers/, August 2000. Last accessed Jan 25, 2012.

[P+96] Kent Pitman et al. Common Lisp HyperSpec. http://www.lispworks.com/

documentation/HyperSpec/Front/index.htm, 1996. Last accessed Feb 4, 2012.

[RBRK] François-René Rideau, Daniel Barlow, Christopher Rhodes, and Garry King. Asdf.
http://common-lisp.net/project/asdf/. Last accessed Feb 5, 2012.

[Rho09] Christophe Rhodes. User-extensible sequences in Common Lisp. In Proceedings of the
2007 International Lisp Conference, pages 13:1–13:14. ACM, 2009. Also available at
http://doc.gold.ac.uk/~mas01cr/papers/ilc2007/sequences-20070301.pdf.

[sli] SLIME: The Superior Lisp Interaction Mode for Emacs. http://common-lisp.net/

project/slime/. Last accessed Feb 4, 2012.

75

http://www.quicklisp.org/
http://www.ietf.org/rfc/rfc3986.txt
http://jcp.org/aboutJava/communityprocess/final/jsr223/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr223/index.html
http://java.sun.com/developer/onlineTraining/protocolhandlers/
http://java.sun.com/developer/onlineTraining/protocolhandlers/
http://www.lispworks.com/documentation/HyperSpec/Front/index.htm
http://www.lispworks.com/documentation/HyperSpec/Front/index.htm
http://common-lisp.net/project/asdf/
http://doc.gold.ac.uk/~mas01cr/papers/ilc2007/sequences-20070301.pdf
http://common-lisp.net/project/slime/
http://common-lisp.net/project/slime/

Index

AUTOLOAD-VERBOSE, 29
BATCH-MODE, 36
CL-USER-COMPATIBILITY, 73
COMMAND-LINE-ARGUMENT-LIST, 30
COMPILE-FILE-ENVIRONMENT, 67
COMPILE-FILE-TYPE, 62
COMPILER-ERROR-CONTEXT, 69
DEBUG-CONDITION, 31
DEBUG-LEVEL, 37
DISASSEMBLER, 31
DO-AUTO-IMPORTS, 72
ED-FUNCTIONS, 32
ENABLE-INLINE-EXPANSION, 30
GUI-BACKEND, 36
INLINE-DECLARATIONS, 65
INSPECTOR-HOOK, 31
JAVA-OBJECT-TO-STRING-LENGTH, 18
LISP-HOME, 30
LOAD-TRUENAME-FASL, 32
PRINT-STRUCTURE, 34
REQUIRE-STACK-FRAME, 31
SAFETY, 64
SAVED-BACKTRACE, 34
SOURCE-POSITION, 62
SPEED, 63
SUPPRESS-COMPILER-WARNINGS, 30
WARN-ON-REDEFINITION, 32
+CL-PACKAGE+, 62
+FALSE+, 24
+FALSE-TYPE+, 65
+FIXNUM-TYPE+, 62
+KEYWORD-PACKAGE+, 61
+NULL+, 21
+TRUE+, 22

ACCESSOR-METHOD-SLOT-DEFINITION, 54
ADD-DEPENDENT, 54
ADD-DIRECT-METHOD, 56
ADD-DIRECT-SUBCLASS, 56
ADD-PACKAGE-LOCAL-NICKNAME, 41
ADD-TO-CLASSPATH, 20
ADJOIN-EQL, 34
ALLOCATE-FUNCALLABLE-INSTANCE, 66
ARGLIST, 34
ASET, 62

ASSQ, 35
ASSQL, 33
AUTOLOAD, 31
AUTOLOAD-MACRO, 32
AUTOLOADP, 32
AVAILABLE-ENCODINGS, 66
AVER, 35

BUILT-IN-FUNCTION-P, 67

CACHE-EMF, 67
CADDR, 30
CADR, 35
CALL-COUNT, 66
CANCEL-FINALIZATION, 32
CANONICALIZE-DIRECT-SUPERCLASSES, 56
CAR, 34
CDR, 30
CHAIN, 21
CHAR-TO-UTF8, 31
CHARPOS, 34
CHECK-SEQUENCE-BOUNDS, 63
CLASS-DEFAULT-INITARGS, 53, 65
CLASS-DIRECT-DEFAULT-INITARGS, 55, 67
CLASS-DIRECT-METHODS, 69
CLASS-DIRECT-SLOTS, 52, 69
CLASS-DIRECT-SUBCLASSES, 52, 62
CLASS-DIRECT-SUPERCLASSES, 57
CLASS-FINALIZED-P, 54, 60
CLASS-PRECEDENCE-LIST, 53, 66
CLASS-PROTOTYPE, 55
CLASS-SLOTS, 57
CLASSFILES-IMPORT, 73
CLASSP, 31
COLLECT, 34
Command Line Options, 7
COMPILE-FILE-IF-NEEDED, 29, 61
COMPILE-SYSTEM, 32
COMPILED-LISP-FUNCTION-P, 63
COMPILER-ERROR, 37
COMPILER-MACROEXPAND, 60
COMPILER-SUBTYPEP, 63
COMPILER-UNSUPPORTED-FEATURE-ERROR,

37
COMPUTE-APPLICABLE-METHODS, 56

76

INDEX 77

COMPUTE-APPLICABLE-METHODS-USING-
CLASSES, 55

COMPUTE-CLASS-PRECEDENCE-LIST, 52
COMPUTE-DEFAULT-INITARGS, 55
COMPUTE-DISCRIMINATING-FUNCTION, 53
COMPUTE-EFFECTIVE-METHOD, 54
COMPUTE-EFFECTIVE-SLOT-DEFINITION,

56
COMPUTE-SLOTS, 57
CURRENT-THREAD, 27

DEFCONST, 61
DEFGENERIC, 56
DEFINE-JAVA-CLASS, 18
DEFPACKAGE, 41
DELETE-EQ, 61
DESCRIBE-COMPILER-POLICY, 34
DESCRIBE-JAVA-OBJECT, 23
DESTROY-THREAD, 26
DIRECT-SLOT-DEFINITION, 52
DIRECT-SLOT-DEFINITION-CLASS, 52
DISABLE-ZIP-CACHE, 65
DOUBLE-FLOAT-HIGH-BITS, 62
DOUBLE-FLOAT-LOW-BITS, 66
DOUBLE-FLOAT-NEGATIVE-INFINITY, 29
DOUBLE-FLOAT-POSITIVE-INFINITY, 36
DUMP-CLASSPATH, 18
DUMP-FORM, 63
DUMP-JAVA-STACK, 29

EFFECTIVE-SLOT-DEFINITION, 52
EFFECTIVE-SLOT-DEFINITION-CLASS, 55
EMPTY-ENVIRONMENT-P, 64
ENSURE-CLASS, 56
ENSURE-CLASS-USING-CLASS, 53
ENSURE-COMPATIBILITY, 73
ENSURE-GENERIC-FUNCTION-USING-CLASS,

53
ENSURE-INPUT-STREAM, 64
ENSURE-JAVA-CLASS, 21
ENSURE-JAVA-OBJECT, 18
ENVIRONMENT, 61
ENVIRONMENT-ADD-MACRO-DEFINITION,

60
ENVIRONMENT-ADD-SYMBOL-BINDING, 63
EQL-SPECIALIZER, 56
EQL-SPECIALIZER-OBJECT, 53
EXIT, 31
EXPAND-INLINE, 62
EXTRACT-LAMBDA-LIST, 54
EXTRACT-SPECIALIZER-NAMES, 52

FDEFINITION-BLOCK-NAME, 62
FEATUREP, 35

FILE-DIRECTORY-P, 30
FINALIZE, 33
FINALIZE-GENERIC-FUNCTION, 66
FINALIZE-INHERITANCE, 57
FIND-JAVA-CLASS, 72
FIND-METHOD-COMBINATION, 53
FIXNUM-TYPE-P, 63
FIXNUMP, 33
FLOAT-INFINITY-P, 66
FLOAT-OVERFLOW-MODE, 67
FORWARD-REFERENCED-CLASS, 55
FUNCALLABLE-STANDARD-CLASS, 55
FUNCALLABLE-STANDARD-INSTANCE-ACCESS,

52
FUNCALLABLE-STANDARD-OBJECT, 57
FUNCTION-RESULT-TYPE, 63

GC, 34
GENERIC-FUNCTION-ARGUMENT-PRECEDENCE-

ORDER, 56
GENERIC-FUNCTION-DECLARATIONS, 53
GENERIC-FUNCTION-DOCUMENTATION, 60
GENERIC-FUNCTION-LAMBDA-LIST, 54
GENERIC-FUNCTION-METHOD-CLASS, 56,

61
GENERIC-FUNCTION-METHOD-COMBINATION,

55, 66
GENERIC-FUNCTION-METHODS, 53, 63
GENERIC-FUNCTION-NAME, 56, 68
GET-CACHED-EMF, 64
GET-CURRENT-CLASSLOADER, 19
GET-DEFAULT-CLASSLOADER, 19
GET-FLOATING-POINT-MODES, 34
GET-JAVA-FIELD, 73
GET-MUTEX, 26
GET-SOCKET-STREAM, 36
GETENV, 34
GF-REQUIRED-ARGS, 62
GROVEL-JAVA-DEFINITIONS, 29

HASH-TABLE-WEAKNESS, 67
HASHMAP-TO-HASHTABLE, 72
History, 49

IDENTITY-HASH-CODE, 63
INIT-EQL-SPECIALIZATIONS, 67
INIT-GUI, 35
INLINE-EXPANSION, 62
INTEGER-TYPE-HIGH, 69
INTEGER-TYPE-P, 67
INTERACTIVE-EVAL, 68
INTERN-EQL-SPECIALIZER, 54
INTERNAL-COMPILER-ERROR, 33
INTERRUPT-LISP, 35

78 INDEX

INTERRUPT-THREAD, 27
INVOKE-ADD-IMPORTS, 72
INVOKE-RESTARGS, 73
ITERABLE-TO-LIST, 73

JAPROPOS, 73
JAR-IMPORT, 73
JAR-PATHNAME, 33, 39
JAR-STREAM, 68
JARRAY-COMPONENT-TYPE, 20
JARRAY-FROM-LIST, 21
JARRAY-LENGTH, 24
JARRAY-REF, 24
JARRAY-REF-RAW, 21
JARRAY-SET, 23
JARRAY-TO-LIST, 72
JAVA-CLASS, 21
JAVA-CLASS-METHOD-NAMES, 72
JAVA-EXCEPTION, 23
JAVA-EXCEPTION-CAUSE, 18
JAVA-OBJECT, 22
JAVA-OBJECT-P, 20
JCALL, 21
JCALL-RAW, 24
JCLASS, 19
JCLASS-ALL-INTERFACES, 73
JCLASS-ARRAY-P, 21
JCLASS-CONSTRUCTORS, 20
JCLASS-FIELD, 24
JCLASS-FIELDS, 23
JCLASS-INTERFACE-P, 24
JCLASS-INTERFACES, 22
JCLASS-METHODS, 19
JCLASS-NAME, 20
JCLASS-OF, 18
JCLASS-SUPERCLASS, 20
JCLASS-SUPERCLASS-P, 18
JCMN, 73
JCOERCE, 23
JCONSTRUCTOR, 23
JCONSTRUCTOR-PARAMS, 23
JEQUAL, 21
JFIELD, 22
JFIELD-NAME, 18
JFIELD-RAW, 23
JFIELD-TYPE, 19
JINSTANCE-OF-P, 18
JINTERFACE-IMPLEMENTATION, 18
JLIST-TO-LIST, 73
JMAKE-INVOCATION-HANDLER, 22
JMAKE-PROXY, 24
JMEMBER-PROTECTED-P, 22
JMEMBER-PUBLIC-P, 21
JMEMBER-STATIC-P, 23

JMETHOD, 19
JMETHOD-LET, 21
JMETHOD-NAME, 19
JMETHOD-PARAMS, 20
JMETHOD-RETURN-TYPE, 18
JNEW, 20
JNEW-ARRAY, 21
JNEW-ARRAY-FROM-ARRAY, 23
JNEW-ARRAY-FROM-LIST, 19
JNEW-RUNTIME-CLASS, 19
JNULL-REF-P, 21
JOBJECT-CLASS, 23
JOBJECT-LISP-VALUE, 20
JPROPERTY-VALUE, 19
JREGISTER-HANDLER, 20
JRESOLVE-METHOD, 22
JRUN-EXCEPTION-PROTECTED, 18
JSTATIC, 20
JSTATIC-RAW, 18

LAMBDA-NAME, 60
LAYOUT-CLASS, 69
LAYOUT-LENGTH, 61
LAYOUT-SLOT-INDEX, 68
LIST-DELETE-EQL, 62
LIST-DIRECTORY, 63
LIST-TO-LIST, 72
LOGICAL-PATHNAME-P, 60

MACROEXPAND-ALL, 37
MAILBOX, 30
MAILBOX-EMPTY-P, 26
MAILBOX-PEEK, 26
MAILBOX-READ, 27
MAILBOX-SEND, 27
MAKE-CLASSLOADER, 22
MAKE-DIALOG-PROMPT-STREAM, 31
MAKE-DOUBLE-FLOAT, 68
MAKE-ENVIRONMENT, 63
MAKE-FILE-STREAM, 63
MAKE-FILL-POINTER-OUTPUT-STREAM, 62
MAKE-IMMEDIATE-OBJECT, 22
MAKE-INSTANCES-OBSOLETE, 64
MAKE-INTEGER-TYPE, 69
MAKE-KEYWORD, 63
MAKE-LAYOUT, 61
MAKE-LIST, 66
MAKE-LOGICAL-PATHNAME, 65
MAKE-MAILBOX, 26
MAKE-METHOD-LAMBDA, 56
MAKE-MUTEX, 27
MAKE-SERVER-SOCKET, 35
MAKE-SLIME-INPUT-STREAM, 29
MAKE-SLIME-OUTPUT-STREAM, 32

INDEX 79

MAKE-SLOT-DEFINITION, 60
MAKE-SOCKET, 30
MAKE-STRUCTURE, 65
MAKE-TEMP-FILE, 34
MAKE-THREAD, 26
MAKE-THREAD-LOCK, 26
MAKE-WEAK-REFERENCE, 32
MAP-DEPENDENTS, 52
MAPCAR-THREADS, 27
MEMQ, 29
MEMQL, 29
METAOBJECT, 55
METHOD-FUNCTION, 52
METHOD-GENERIC-FUNCTION, 55
METHOD-LAMBDA-LIST, 54
METHOD-QUALIFIERS, 54
METHOD-SPECIALIZERS, 54
MOST-NEGATIVE-JAVA-LONG, 36
MOST-POSITIVE-JAVA-LONG, 29
MUTEX, 31

NEQ, 36
NEW, 72
NIL-VECTOR, 29
NOTE-NAME-DEFINED, 67
NOTINLINE-P, 60
NSTRING-CAPITALIZE, 60

OBJECT-NOTIFY, 26
OBJECT-NOTIFY-ALL, 26
OBJECT-WAIT, 26
OUT-SYNONYM-OF, 67
OUTPUT-OBJECT, 64

PACKAGE-INHERITED-SYMBOLS, 68
PACKAGE-LOCAL-NICKNAMES, 41
PACKAGE-LOCALLY-NICKNAMED-BY-LIST,

41
PACKAGE-SYMBOLS, 61
PATHNAME-JAR-P, 36
PATHNAME-URL-P, 35, 40
PRECOMPILE, 30, 65
PROBE-DIRECTORY, 31
PROCESS, 30, 66
PROCESS-ALIVE-P, 31, 67
PROCESS-ERROR, 31, 67
PROCESS-EXIT-CODE, 35
PROCESS-INPUT, 30, 65
PROCESS-KILL, 29, 61
PROCESS-OUTPUT, 36
PROCESS-P, 36
PROCESS-WAIT, 36
PUTF, 63
PUTHASH, 61

QUIT, 33

READER-METHOD-CLASS, 56
REGISTER-JAVA-EXCEPTION, 19
RELEASE-MUTEX, 26
REMOVE-DEPENDENT, 53
REMOVE-DIRECT-METHOD, 53
REMOVE-DIRECT-SUBCLASS, 57
REMOVE-PACKAGE-LOCAL-NICKNAME, 42
REMOVE-ZIP-CACHE-ENTRY, 64
REPL, 7
REQUIRE-TYPE, 69
RESOLVE, 32
RUN-PROGRAM, 33
RUN-SHELL-COMMAND, 33

SERVER-SOCKET-CLOSE, 34
SET-CAR, 64
SET-CLASS-DIRECT-SLOTS, 64
SET-CLASS-DIRECT-SUBCLASSES, 61
SET-CLASS-DOCUMENTATION, 69
SET-CLASS-FINALIZED-P, 64
SET-CLASS-SLOTS, 64
SET-FILL-POINTER, 69
SET-FIND-CLASS, 65
SET-FLOATING-POINT-MODES, 31
SET-FUNCALLABLE-INSTANCE-FUNCTION,

53
SET-FUNCTION-INFO-VALUE, 65
SET-GENERIC-FUNCTION-ARGUMENT-PRECEDENCE-

ORDER, 64
SET-GENERIC-FUNCTION-DOCUMENTATION,

64
SET-GENERIC-FUNCTION-INITIAL-METHODS,

60
SET-GENERIC-FUNCTION-METHOD-CLASS,

66
SET-GENERIC-FUNCTION-METHODS, 68
SET-JAVA-FIELD, 72
SET-SCHAR, 62
SET-SLOT-DEFINITION-DOCUMENTATION,

64
SET-SLOT-DEFINITION-INITARGS, 65
SET-SLOT-DEFINITION-INITFORM, 60
SET-SLOT-DEFINITION-READERS, 60
SET-SLOT-DEFINITION-TYPE, 67
SET-SLOT-DEFINITION-WRITERS, 67
SET-TO-LIST, 72
SETF-FUNCTION-NAME-P, 69
SHA256, 65
SHOW-RESTARTS, 36
SHRINK-VECTOR, 68
SIMPLE-SEARCH, 30, 66
SIMPLE-STRING-FILL, 29

80 INDEX

SIMPLE-STRING-SEARCH, 33
SINGLE-FLOAT-BITS, 61
SINGLE-FLOAT-NEGATIVE-INFINITY, 33
SINGLE-FLOAT-POSITIVE-INFINITY, 35
SLIME-INPUT-STREAM, 30
SLIME-OUTPUT-STREAM, 36
SLOT-BOUNDP-USING-CLASS, 55
SLOT-DEFINITION, 54, 68
SLOT-DEFINITION-ALLOCATION, 52, 66
SLOT-DEFINITION-ALLOCATION-CLASS, 65
SLOT-DEFINITION-INITARGS, 57
SLOT-DEFINITION-INITFORM, 53
SLOT-DEFINITION-INITFUNCTION, 56
SLOT-DEFINITION-LOCATION, 52, 64
SLOT-DEFINITION-NAME, 56, 68
SLOT-DEFINITION-READERS, 53, 60
SLOT-DEFINITION-TYPE, 54
SLOT-DEFINITION-WRITERS, 55, 68
SLOT-MAKUNBOUND-USING-CLASS, 56
SLOT-VALUE-USING-CLASS, 55
SOCKET-ACCEPT, 32
SOCKET-CLOSE, 32
SOCKET-LOCAL-ADDRESS, 35
SOCKET-LOCAL-PORT, 31
SOCKET-PEER-ADDRESS, 34
SOCKET-PEER-PORT, 35
SOURCE, 35
SOURCE-FILE-POSITION, 35
SOURCE-PATHNAME, 29
SPECIAL-VARIABLE-P, 32
SPECIALIZER, 52
SPECIALIZER-DIRECT-GENERIC-FUNCTIONS,

55
SPECIALIZER-DIRECT-METHODS, 55
STANDARD-ACCESSOR-METHOD, 53
STANDARD-DIRECT-SLOT-DEFINITION, 52
STANDARD-EFFECTIVE-SLOT-DEFINITION,

52
STANDARD-INSTANCE-ACCESS, 53, 65
STANDARD-METHOD, 57
STANDARD-READER-METHOD, 54
STANDARD-SLOT-DEFINITION, 52
STANDARD-WRITER-METHOD, 55
STD-INSTANCE-CLASS, 60
STD-INSTANCE-LAYOUT, 68
STD-SLOT-BOUNDP, 65
STD-SLOT-VALUE, 60
STREAM-OUTPUT-OBJECT, 68
STREAM-TERPRI, 68
STREAM-WRITE-CHAR, 66
STRING-CAPITALIZE, 62
STRING-EQUAL, 66
STRING-FIND, 36
STRING-INPUT-STREAM-CURRENT, 35

STRING-NOT-EQUAL, 65
STRING-NOT-LESSP, 64
STRING-POSITION, 30
STRING/=, 61
STRING¡, 67
STRUCTURE-LENGTH, 67
STRUCTURE-SET, 61
STYLE-WARN, 36
SWAP-SLOTS, 63
SYMBOL-MACRO-P, 62
SYNCHRONIZED-ON, 27

THREAD, 27
THREAD-ALIVE-P, 26
THREAD-JOIN, 26
THREAD-NAME, 27
THREADP, 26
TRULY-THE, 30
TYPE-ERROR, 66

UNREGISTER-JAVA-EXCEPTION, 20
UPDATE-DEPENDENT, 54
UPTIME, 32
URI, 39
URI-DECODE, 29
URI-ENCODE, 31
URL-PATHNAME, 36, 39
URL-PATHNAME-AUTHORITY, 32, 40
URL-PATHNAME-FRAGMENT, 29, 40
URL-PATHNAME-QUERY, 35, 40
URL-PATHNAME-SCHEME, 29, 40

VALIDATE-SUPERCLASS, 54
VECTOR-DELETE-EQL, 61
VECTOR-TO-LIST, 73

WEAK-REFERENCE, 34
WEAK-REFERENCE-VALUE, 34
WITH-CONSTANT-SIGNATURE, 73
WITH-MUTEX, 26
WITH-THREAD-LOCK, 27
WRITE-VECTOR-UNSIGNED-BYTE-8, 60
WRITER-METHOD-CLASS, 54

ZIP, 68

	Preface to the Third Edition
	Preface to the Third Edition
	Preface to the Second Edition
	Introduction
	Conformance
	ANSI Common Lisp
	Contemporary Common Lisp

	License
	Contributors

	Running ABCL
	Options
	Initialization

	Interaction with the Hosting JVM
	Lisp to Java
	Low-level Java API

	Java to Lisp
	Calling Lisp from Java

	Java Scripting API (JSR-223)
	Conversions
	Implemented JSR-223 interfaces
	Start-up and configuration file
	Evaluation
	Compilation
	Invocation of functions and methods
	Implementation of Java interfaces in Lisp
	Implementation of Java classes in Lisp

	Implementation Dependent Extensions
	JAVA
	Modifying the JVM CLASSPATH
	Creating a synthetic Java Class at Runtime

	THREADS
	EXTENSIONS

	Beyond ANSI
	Compiler to Java 5 Bytecode
	Pathname
	Package-Local Nicknames
	Extensible Sequences
	Extensions to CLOS
	Metaobject Protocol
	Specializing on Java classes

	Extensions to the Reader
	Overloading of the CL:REQUIRE Mechanism
	JSS extension of the Reader by SHARPSIGN-DOUBLE-QUOTE
	ASDF

	Contrib
	abcl-asdf
	Referencing Maven Artifacts via ASDF
	API
	Directly Instructing Maven to Download JVM Artifacts

	asdf-jar
	jss
	JSS usage

	jfli
	asdf-install

	History
	The MOP Dictionary
	The SYSTEM Dictionary
	The JSS Dictionary

