Armed Bear Common Lisp User Manual

Mark Evenson Erik Hulsmann Rudolf Schlatte Alessio Stalla
Ville Voutilainen

Version 1.10.0
February 2026

Contents

0.0.1 Preface to the First Edition
0.0.2 Preface to the Second Edition
0.0.3 Preface to the Third Edition
0.0.4 Preface to the Fourth Edition
0.0.5 Preface to the Fifth Edition
0.0.6 Preface to the Sixth Edition
0.0.7 Preface to the Seventh Edition
0.0.8 Preface to the Eighth Edition
0.0.9 Preface to the Ninth Edition
0.0.10 Preface to the Tenth Edition
0.0.11 Preface to the Eleventh Edition
1 Introduction
1.1 Conformance e
1.1.1 ANSI Common Lisp
1.1.2 Contemporary Common Lisp
1.2 License. e e
1.3 Contributors e
2 Running ABCL
2.1 Command Line Options
2.2 Initialization e
3 Interaction with the Hosting JVM
3.1 LisptoJava o e e e
3.1.1 Low-level Java API.
3.2 Javato Lisp o .o
3.2.1 Calling Lisp from Java L oL
3.3 Java Scripting APT (JSR-223)
3.3.1 Conversions u i e e e e
3.3.2 Implemented JSR-223 interfaces
3.3.3 Start-up and configuration file 000
3.3.4 Evaluation
3.3.5 Compilation
3.3.6 Invocation of functions and methods
3.3.7 Implementation of Java interfaces in Lisp
3.4 Implementation Extension Dictionaries
3.4.1 The JAVA Dictionary
3.4.2 The THREADS Dictionary
3.4.3 The EXTENSIONS Dictionary

SO UT UT U OT O O

[ele e IENIEN B |

11
11
12

4 CONTENTS

4 Beyond ANSI

4.1 Compiler to Java Virtual Machine Bytecode
4.1.1 Compiler Diagnostics
4.1.2 Decompilation e

4.2 Pathname e

4.3 Package-Local Nicknames

4.4 Extensible Sequences

4.5 Extensions to CLOS
4.5.1 Metaobject Protocol
4.5.2 Specializing on Java classes L.
4.5.3 Subtypes of mop:specializer

4.6 Extensions to the Reader oo

4.7 Overloading of the CL:REQUIRE Mechanism

4.8 JSS extension of the Reader by SHARPSIGN-DOUBLE-QUOTE

4.9 ASDF . . . e

4.10 Extension to CL:MAKE-ARRAY

5 Contrib

5.1 abclasdfo
5.1.1 Referencing Maven Artifacts via ASDF
5.1.2 API . . . e
5.1.3 Directly Instructing Maven to Download JVM Artifacts

5.2 asdf-jar ...

0.3 JSS . e e
5.3.1 JSSwusage

5.4 G L,

5.5 abcl-introspect
5.5.1 Implementations for CL:DISASSEMBLE

5.6 abcl-buildo
5.6.1 ABCL-BUILD Utilities it

5.7 mnamed-readtables

6 History
A The MOP Dictionary
B The SYSTEM Dictionary

C The JSS Dictionary

0.0.1 Preface to the First Edition

ABCL 1.0 was released at the European Common Lisp Meeting in Amsterdam in 2011.

0.0.2 Preface to the Second Edition
ABCL 1.1 now contains (A)MOP. We hope you enjoy! ~The Mgmt.

0.0.3 Preface to the Third Edition

57

59

67

89

The implementation now contains a performant and conforming implementation of (A)MOP to

the point of inclusion in CLOSER-MOP’s test suite.

CONTENTS 5

0.0.4 Preface to the Fourth Edition

ABCL 1.3 now implements an optimized implementation of the org.armedbear.lisp.LispStack
abstraction thanks to Dmitry Nadezhin which runs on ORCL JVMS from JAVA 5 through JAvAa
8.

0.0.5 Preface to the Fifth Edition

ABCL 1.4 consolidates eighteen months of production bug-fixes, and substantially improves the
support for invoking external processes via SYS:RUN-PROGRAM.

0.0.6 Preface to the Sixth Edition

With the sixth major release of the implementation, we make the following explicit revision of our
compatibility to the underlying JVM. Since we are an open source implementation, we insist on
possible open access to the sources from with an JDK may both be built and run upon. This
requirement is no longer met by Java 5, so henceforth with the release of ABCL 1.5, we will
support JAVA 6, JAVA 7 and JAVA 8 runtimes.

0.0.7 Preface to the Seventh Edition

Long overdue, we turn our Java to 11.

Reflecting the management’s best estimates as to implementation most easily available to the
potential ABCL 1.6 User, the Seventh release implementation works best with JAvA 8 or JAvA 11
runtimes. Since freely available implementations of jdk6 and jdk7 exist, we still strive to maintain
compatibility with the Java 6 and Java 7 runtime environments but those environments are less
tested. The User may need to use the facilities of the ABCL-BUILD contrib to recompile the
implementation locally in more exotic runtimes (see Section 5.6 page 55).

0.0.8 Preface to the Eighth Edition

Since the implementation now runs comfortably on OPENJDKG6G, OPENJDK7, OPENJDKS, OPEN-
JDK11, and OPENJDK14, we take advantage of the presence of the java.nio package introduced
in JAVA 5. We have overhauled the implementation to use these abstractions for arrays specialized
on commonly used unsigned-byte types, adding two additional keyword arguments useful in their
construction to cl:make-array.l.

0.0.9 Preface to the Ninth Edition

With the Ninth Edition of the implementation we now support building and running with OPEN-
JDK15. This is intended as the last major release to support the OPENJDKG, OPENJDKY7, and
OPENJDKS platforms.

The implementation of the EXT: JAR-PATHNAME and EXT : URL-PATHNAME sub-types of c1:PATHNAME
has been fixed to the point that arbitrary references to ZIP archives within archives now work for
most read-only operations (CL: PROBE-FILE, CL: TRUENAME, CL:OPEN, CL:LOAD, CL:FILE-WRITE-DATE,
CL:DIRECTORY, and CL:MERGE-PATHNAMES). The previous versions of the implementation relied on
the ability for java.net.URL to open streams of an archive within an archive, behavior that was
silently dropped after Java 5, and consequently hasn’t worked on common platforms supported
by the Bear in a long time. This restores the feasibility of accessing fasls from within jar files 2.

1See 4.10 on page 49
2Examine the ASDF-JAR contrib in section 5.2 on page 52 for a recipe for packaging and accessing such artifacts.

6 CONTENTS

0.0.10 Preface to the Tenth Edition

For the Tenth edition, we have explicitly tested the stable, Long Term Support (“LTS”) versions
of the OPENJDK, namely OPENJDK8, OPENJDK11, OPENJDK17, and OPENJDK21. We intend to
drop one or more of these platforms for the next edition in order to more completely overhaul
the implementations use of compare and swap on memory originally allocated outside the hosting
JVM.

Preface to the Tenth Edition, Second Revision

With this release, the binaries for Second Revision of the Tenth Edition are built with OPENJDK11.
Users wishing to run on the venerable OPENJDKS8 platform may use the ABCL-BUILD contrib
to recompile the implementation locally from source (see Section 5.6 page 55).

0.0.11 Preface to the Eleventh Edition

The Eleventh Edition of the implementation, aka abcl-1.10.0 incorporates most of Tarn Burton’s
work on providing reasonable CLOS scaffolding for various GRAY-STREAMS implementation
defaults.

We have tested across on the latests currently available openjdk Long Term Service (LTS)
versions at time of our release, which means ABCL. This means ABCL will run on any of
openjdk{8,11,17,21,25}.

Chapter 1

Introduction

Armed Bear Common Lisp (ABCL) is an implementation of COMMON LisP that runs on the Java
Virtual Machine (JVM). ABCL compiles COMMON LISP to JAVA byte-code!, with an efficiency
that varies upon the hosting JVM implementation. ABCL supports building and running on the
OPENJDKS, OPENJDK11, and OPENJDK17 JVM implementations?. As of May 2022, we are using
the Adoptium community [Gro22] binary releases which provides perhaps the least encumbered
installation of unencumbered openjdk implementations.

Armed Bear provides the following integration methods for interfacing with Java code and
libraries:

e Lisp code can create Java objects and call their methods (see Section 3.1, page 13).

e Java code can call Lisp functions and generic functions, either directly (Section 3.2.1, page 15)
or via JSR-223 (Section 3.3, page 17).

e jinterface-implementation creates Lisp-side implementations of Java interfaces that can
be used as listeners for Swing classes and similar.

e java:jnew-runtime-class can inject fully synthetic Java classes—and their objects— into
the current JVM process whose behavior is specified via closures expressed in COMMON
Lisp. 3

ABCL is supported by the Lisp library manager QUICKLISP? and can run many of the programs
and libraries provided therein out-of-the-box.

1.1 Conformance

1.1.1 ANSI Common Lisp

ABCL is currently a (non)-conforming ANSI Common Lisp implementation due to the following
known issues:

e The generic function signatures of the CL:DOCUMENTATION symbol do not match the specifi-
cation.

e The CL:TIME form does not return a proper CL:VALUES environment to its caller.

1The class files produced by the compiler have a byte-code version of “49.0”.

2The codebase runs and compiles on every historical openjdk from OPENJDKG6 through OPENJDKS, does *not*
run on eitherOPENJDKO or eitherOPENJDK10, but then runs on every openjdk released as of May 2022 with minor
adjustments

3Parts of the current implementation are not fully finished, so the status of some interfaces here should be
treated with skepticism if you run into problems.

4nttp://quicklisp.org/

http://quicklisp.org/

8 CHAPTER 1. INTRODUCTION

e When merging pathnames and the defaults point to a EXT: JAR-PATHNAME, we set the DEVICE
of the result to :UNSPECIFIC if the pathname to be be merged does not contain a specified
DEVICE, does not contain a specified HOST, does contain a relative DIRECTORY, and we are
not running on a MSFT Windows platform.®

Somewhat confusingly, this statement of non-conformance in the accompanying user documen-
tation fulfills the requirements that ABCL is a conforming ANSI Common Lisp implementation
according to the Common Lisp Hyper-Spec [PT96]. Clarifications to this point are solicited.

ABCL aims to be be a fully conforming ANSI Common Lisp implementation. Any other
behavior should be reported as a bug.

1.1.2 Contemporary Common Lisp

In addition to ANSI conformance, ABCL strives to implement features expected of a contempo-
rary COMMON LiIsP, i.e. a Lisp of the post-2005 Renaissance.

The following known problems detract from ABCL being a proper contemporary Common
Lisp.

e An incomplete implementation of interactive debugging mechanisms, namely a no-op version
of STEPS, the inability to inspect local variables in a given call frame, and the inability to
resume a halted computation at an arbitrarily selected call frame.

e Incomplete streams abstraction, in that ABCL needs a suitable abstraction between ANSI

and GRAY STREAMS with a runtime switch for the beyond conforming behavior”.

e Incomplete documentation: source code is missing doc-strings from all exported symbols
from the EXTENSIONS, SYSTEM, JAVA, MOP, and THREADS packages. This user manual is
currently in draft status.

1.2 License

ABCL is licensed under the terms of the GPL v2 of June 1991 with an added “classpath-
exception” clause (see the file COPYING in the source distribution® for the license, term 13 in
the same file for the classpath exception). This license broadly means that you must distribute
the sources to ABCL, including any changes you make, together with a program that includes
ABCL, but that you are not required to distribute the sources of the whole program. Submitting
your changes upstream to the ABCL development team is actively encouraged and very much
appreciated, of course.

1.3 Contributors

e Dmitry Nadezhin
e Philipp Marek Thanks for the mark-up, and review of the Manual

e Douglas Miles Thanks for the whacky IKVM stuff and keeping the flame alive in
the dark years.

5The intent of this rather arcane sounding deviation from conformance is so that the result of a merge won’t fill in
a DEVICE with the wrong ”default device for the host” in the sense of the fourth paragraph in the CLHS description
of MERGE-PATHNAMES (see in [P196] the paragraph beginning ”If the PATHNAME explicitly specifies a host
and not a device...”). A future version of the implementation may return to conformance by using the HOST value
to reflect the type explicitly. See 4.2 on page 45 for further information.

6Somewhat surprisingly allowed by ANSI

"The streams could be optimized to the JVM NIO [Mic05] abstractions at great profit for binary byte-level
manipulations.

8See http://abcl.org/svn/trunk/tags/1.10.0/COPYING

http://abcl.org/svn/trunk/tags/1.10.0/COPYING

1.3. CONTRIBUTORS

e Alan Ruttenberg Thanks for JSS.
e Olof-Joachim Frahm

e Jonathan Cunningham

e Uthar

e Alejandro Zamora Fonseca Thanks for ABCL-STEPPER, and all the patches.
e phoe

e jackdaniel

e Robert Munyer

e Eric Timmons (daewok)

e contrapunctus

e Scott Burson

e Samuel Hunter

e Phil Eaton

e jpellegrini

e Andrés Simon (piso)

e and of course Peter Graves

10

CHAPTER 1.

INTRODUCTION

Chapter 2

Running ABCL

ABCL is packaged as a single jar file usually named either abcl. jar or possibly something like
abcl-1.10.0. jar if using a versioned package on the local file-system from your system vendor.
This jar file can be executed from the command line to obtain a REPL?, viz:

cmd$ java -jar abcl. jar

N.b. for the proceeding command to work, the java executable needs to be in your path.

To facilitate the use of ABCL in tool chains such as SLIME [sli] (the Superior Lisp Interaction
Mode for Emacs), we provide both a Bourne shell script and a DOS batch file. If you or your
administrator adjusted the path properly, ABCL may be executed simply as:

cmd$ abcl

Probably the easiest way of setting up an editing environment using the EMACS editor is to
use QUICKLISP and follow the instructions at http://www.quicklisp.org/beta/#slime.

2.1 Command Line Options
ABCL recognizes the following command line options:

--help
displays a help message.

--noinform

Suppresses the printing of startup information and banner.
--noinit

suppresses the loading of the ~/.abclrc startup file.

—-nosystem
suppresses loading the system.lisp customization file.

-—-eval FORM
evaluates FORM before initializing the REPL.

--load FILE
loads the file FILE before initializing the REPL.

--load-system-file FILE
loads the system file? FILE before initializing the REPL.

1Read-Eval Print Loop, a Lisp command-line
2System files have a distinguished PATHNAME resolution mechanism based on the location of the system.1lisp
source unit

11

http://www.quicklisp.org/beta/#slime

12 CHAPTER 2. RUNNING ABCL

--batch
evaluates forms specified by arguments and in the initialization file ~/.abclrc, and then
exits without starting a REPL.

All of the command line arguments following the occurrence of -- are passed unprocessed
into a list of strings accessible via the variable EXT: *COMMAND-LINE-ARGUMENT-LIST* from within
ABCL.

2.2 Initialization

If the ABCL process is started without the --noinit flag, it attempts to load a file named
.abclrc in the user’s home directory and then interpret its contents.

The user’s home directory is determined by the value of the JVM system property user.home.
This value may or may not correspond to the value of the HOME system environment variable, at
the discretion of the JVM implementation that ABCL finds itself hosted upon.

Chapter 3

Interaction with the Hosting JVM

The Armed Bear Common Lisp implementation is hosted on a Java Virtual Machine. This chapter
describes the mechanisms by which the implementation interacts with that hosting mechanism.

3.1 Lisp to Java

ABCL offers a number of mechanisms to interact with Java from its Lisp environment. It allows
calling both instance and static methods of Java objects, manipulation of instance and static fields
on Java objects, and construction of new Java objects.

When calling Java routines, some values will automatically be converted by the FFI! from
Lisp values to Java values. These conversions typically apply to strings, integers and floats.
Other values need to be converted to their JAVA equivalents by the programmer before calling the
Java object method. Java values returned to LISP are also generally converted back to their Lisp
counterparts. Some operators make an exception to this rule and do not perform any conversion;
those are the “raw” counterparts of certain FFI functions and are recognizable by their name
ending with -RAW.

3.1.1 Low-level Java API

This subsection covers the low-level API available after evaluating (require :java). A higher
level JavA API, developed by Alan Ruttenberg, is available in the contrib/jss directory and
described later in this document, see Section 5.3 on page 52.

Calling Java Object Methods

There are two ways to call a Java object method in the low-level (basic) APIL:

e Call a specific method reference (which was previously acquired)

e Dynamic dispatch using the method name and the call-specific arguments provided by finding
the best match (see Section 3.1.1).

JAVA:JMETHOD is used to acquire a specific method reference. The function takes two or
more arguments. The first is a Java class designator (a JAVA:JAVA-CLASS object returned by
JAVA: JCLASS or a string naming a Java class). The second is a string naming the method.

Any arguments beyond the first two should be strings naming Java classes, with one exception
as listed in the next paragraph. These classes specify the types of the arguments for the method.

1Foreign Function Interface is the term of art for the part of a Lisp implementation which implements calling
code written in other languages, typically normalized to the local C compiler calling conventions.

13

14 CHAPTER 3. INTERACTION WITH THE HOSTING JVM

When JAVA:JMETHOD is called with three parameters and the last parameter is an integer, the
first method by that name and matching number of parameters is returned.

Once a method reference has been acquired, it can be invoked using JAVA: JCALL, which takes
the method as the first argument. The second argument is the object instance to call the method
on, or NIL in case of a static method. Any remaining parameters are used as the remaining
arguments for the call.

Calling Java object methods: dynamic dispatch

The second way of calling Java object methods is by using dynamic dispatch. In this case
JAVA:JCALL is used directly without acquiring a method reference first. In this case, the first
argument provided to JAVA:JCALL is a string naming the method to be called. The second argu-
ment is the instance on which the method should be called and any further arguments are used
to select the best matching method and dispatch the call.

Dynamic dispatch: Caveats

Dynamic dispatch is performed by using the Java reflection API?. Generally the dispatch works
fine, but there are corner cases where the API does not correctly reflect all the details involved in
calling a Java method. An example is the following Java code:

ZipFile jar = new ZipFile("/path/to/some.jar");

Object els = jar.entries();

Method method = els.getClass().getMethod("hasMoreElements");
method . invoke (els);

Even though the method hasMoreElements () is public in Enumeration, the above code fails
with

java.lang.IllegalAccessException: Class ... can
not access a member of class java.util.zip.ZipFile\$2 with modifiers
"public"

at sun.reflect.Reflection.ensureMemberAccess (Reflection. java:65)
at java.lang.reflect.Method.invoke (Method.java:583)
at

This is because the method has been overridden by a non-public class and the reflection API,
unlike javac, is not able to handle such a case.

While code like that is uncommon in Java, it is typical of ABCL’s FFI calls. The code above
corresponds to the following Lisp code:

(let ((jar (jnew "java.util.zip.ZipFile" "/path/to/some.jar")))
(let ((els (jcall "entries" jar)))
(jcall "hasMoreElements" els)))

except that the dynamic dispatch part is not shown.

To avoid such pitfalls, all Java objects in ABCL carry an extra field representing the “intended
class” of the object. That class is used first by JAVA:JCALL and similar to resolve methods; the
actual class of the object is only tried if the method is not found in the intended class. Of course,
the intended class is always a super-class of the actual class — in the worst case, they coincide.
The intended class is deduced by the return type of the method that originally returned the Java
object; in the case above, the intended class of ELS is java.util.Enumeration because that is
the return type of the entries method.

While this strategy is generally effective, there are cases where the intended class becomes too
broad to be useful. The typical example is the extraction of an element from a collection, since
methods in the collection API erase all types to Object. The user can always force a more specific
intended class by using the JAVA: JCOERCE operator.

2The Java reflection API is found in the java.lang.reflect package

3.2. JAVA TO LISP 15

Calling Java class static methods

Like non-static methods, references to static methods can be acquired by using the JAVA: JMETHOD
primitive. Static methods are called with JAVA:JSTATIC instead of JAVA:JCALL.

Like JAVA: JCALL, JAVA: JSTATIC supports dynamic dispatch by passing the name of the method
as a string instead of passing a method reference. The parameters should be values to pass in the
function call instead of a specification of classes for each parameter.

Parameter matching for FFI dynamic dispatch

The algorithm used to resolve the best matching method given the name and the arguments’ types
is the same as described in the Java Language Specification. Any deviation should be reported as
a bug.

Instantiating Java objects

JAVA objects can be instantiated (created) from LisSP by calling a constructor from the class of the
object to be created. The JAVA: JCONSTRUCTOR primitive is used to acquire a constructor reference.
Its arguments specify the types of arguments of the constructor method the same way as with
JAVA: JMETHOD.

The obtained constructor is passed as an argument to JAVA: JNEW, together with any arguments.
JAVA: JNEW can also be invoked with a string naming the class as its first argument.

Accessing Java object and class fields

Fields in Java objects can be accessed using the getter and setter functions JAVA:JFIELD and
(SETF JAVA:JFIELD). Static (class) fields are accessed the same way, but with a class object or
string naming a class as first argument.

Like JAVA:JCALL and friends, values returned from these accessors carry an intended class
around, and values which can be converted to Lisp values will be converted.

3.2 Java to Lisp

This section describes the various ways that one interacts with Lisp from JAVA code. In order to
access the Lisp world from JAVA, one needs to be aware of a few things, the most important ones
being listed below:

e All Lisp values are descendants of LispObject.

e Lisp symbols are accessible either via static members of the Symbol class, or by dynamically
introspecting a Package object.

e The Lisp dynamic environment may be saved via LispThread.bindSpecial (Binding) and
restored via LispThread.resetSpecialBindings (Mark).

e Functions can be executed by invoking LispObject.execute(args [...])

3.2.1 Calling Lisp from Java

Note: the entire ABCL LisP system implementation in JAVA is resident in the org.armedbear.lisp
package, but the following code snippets do not show the relevant import statements in the interest
of brevity. An example of the import statement would be

import org.armedbear.lisp.*;

16 CHAPTER 3. INTERACTION WITH THE HOSTING JVM

to potentially import all the JVM symbol from the org.armedbear.1lisp namespace.
There can only ever be a single Lisp interpreter per JVM instance. A reference to this inter-
preter is obtained by calling the static method Interpreter.createInstance().

Interpreter interpreter = Interpreter.createlnstance();

If this method has already been invoked in the lifetime of the current Java process it will return
null, so if you are writing JAVA whose life-cycle is a bit out of your control (like in a JAVA servlet),
a safer invocation pattern might be:

Interpreter interpreter = Interpreter.getInstance();
if (interpreter == null) {
interpreter = Interpreter.createlnstance();

3

The Lisp eval primitive may simply be passed strings for evaluation:

String line = "(load,\"file.lisp\")";
LispObject result = interpreter.eval(line);

Notice that all possible return values from an arbitrary Lisp computation are collapsed into
a single return value. Doing useful further computation on the LispObject depends on knowing
what the result of the computation might be. This usually involves some amount of instanceof
introspection, and forms a whole topic to itself (see Section 3.2.1, page 17).

Using eval involves the Lisp interpreter. Lisp functions may also be directly invoked by Java
method calls as follows. One simply locates the package containing the symbol, obtains a reference
to the symbol, and then invokes the execute () method with the desired parameters.

interpreter.eval (" (defun, foo,(msg)" +
"(format,nil_ \"You,told me,’~A’~Y\" msg))");

Package pkg = Packages.findPackage ("CL-USER");

Symbol foo = pkg.findAccessibleSymbol ("F0O0");

Function fooFunction = (Function)foo.getSymbolFunction();
JavaObject parameter = new JavaObject("Lispyisgfun!");
LispObject result = fooFunction.execute(parameter);

// How to get the "naked string value"?
System.out.println("The result was," + result.writeToString());

If one is calling a function in the CL package, the syntax can become considerably simpler.
If we can locate the instance of definition in the ABCL Java source, we can invoke the symbol
directly. For instance, to tell if a LispObject is (Lisp) NIL, we can invoke the CL function NULL
in the following way:

boolean nullp(LispObject object) {
LispObject result = Primitives.NULL.execute(object);
if (result == NIL) {
return false;

3

return true;

Note, that the symbol nil is explicitly named in the JAVA namespace as Symbol.NIL but is
always present in the local namespace in its unadorned form for the convenience of the User.

Multiple Values

After a call to a function that returns Lisp multiple values, the values are associated with the
executing LispThread until the next call into Lisp. One may access the values object as a list
of LispObject instances via a call to getValues() on that thread reference as evidenced by the
following code:

3.3. JAVA SCRIPTING API (JSR-223) 17

org.armedbear.lisp.Package cl = Packages.findPackage("CL");
Symbol valuesSymbol = cl.findAccessibleSymbol ("VALUES");
LispObject[] valuesArgs = {
LispInteger.getInstance (1), LispInteger.getInstance (2)
s
// equivalent to ‘‘(values 1 2)7~°
LispObject result = valuesSymbol.execute(valuesArgs);
LispObject[] values = LispThread.currentThread().getValues ();
for (LispObject value: values) {
System.out.println("value,==>," + value.printObject ());

3

Introspecting a LispObject

We present various patterns for introspecting an arbitrary LispObject which can hold the result
of every Lisp evaluation into semantics that Java can meaningfully deal with.

LispObject as boolean If the LispObject is to be interpreted as a generalized boolean value,
one can use getBooleanValue() to convert to Java:

LispObject object = Symbol.NIL;
boolean javaValue = object.getBooleanValue ();

Since in Lisp any value other than NIL means ”true”, Java equality can also be used, which is
a bit easier to type and better in terms of information it conveys to the compiler:

boolean javaValue = (object != Symbol.NIL);

LispObject as a list If LispObject is a list, it will have the type Cons. One can then use the
copyToArray method to make things a bit more suitable for Java iteration.

LispObject result = interpreter.eval("’(1,2,4,5)");
if (result instanceof Comns) {
LispObject array[] = ((Cons)result.copyToArray());

}

A more Lispy way to iterate down a list is to use the cdr() access function just as like one
would traverse a list in Lisp:;

LispObject result = interpreter.eval("’(1,2,4.,5)");

while (result != Symbol.NIL) {
doSomething (result.car ());
result = result.cdr();

}

3.3 Java Scripting API (JSR-223)

ABCL can be built with support for JSR-223 [Gro06], which offers a language-agnostic API to
invoke other languages from Java. The binary distribution download-able from ABCL’s home
page is built with JSR-223 support. If you're building ABCL from source on a pre-1.6 JVM, you
need to have a JSR-223 implementation in your classpath (such as Apache Commons BSF 3.x or
greater) in order to build ABCL with JSR-~223 support; otherwise, this feature will not be built.

18 CHAPTER 3. INTERACTION WITH THE HOSTING JVM

This section describes the design decisions behind the ABCL JSR-223 support. It is not a
description of what JSR-223 is or a tutorial on how to use it. See http://abcl.org/trac/
browser/trunk/abcl/examples/jsr-223 for example usage.

3.3.1 Conversions

In general, ABCL’s implementation of the JSR-223 API performs implicit conversion from Java
objects to Lisp objects when invoking Lisp from Java, and the opposite when returning values
from Java to Lisp. This potentially reduces coupling between user code and ABCL. To avoid such
conversions, wrap the relevant objects in JavaObject instances.

3.3.2 Implemented JSR-223 interfaces

JSR-223 defines three main interfaces, of which two (Invocable and Compilable) are optional.
ABCL implements all the three interfaces - ScriptEngine and the two optional ones - almost
completely. While the JSR-223 API is not specific to a single scripting language, it was designed
with languages with a more or less Java-like object model in mind: languages such as JavaScript,
Python, Ruby, which have a concept of ”class” or ”object” with ”fields” and ”methods”. Lisp
is a bit different, so certain adaptations were made, and in one case a method has been left
unimplemented since it does not map at all to Lisp.

The ScriptEngine

The main interface defined by JSR-223, javax.script.ScriptEngine, is implemented by the class
org.armedbear.lisp.scripting.AbclScriptEngine. AbclScriptEngine is a singleton, reflect-

ing the fact that ABCL is a singleton as well. You can obtain an instance of AbclScriptEngine us-

ing the AbclScriptEngineFactory or by using the service provider mechanism through ScriptEngineManager
(refer to the javax.script documentation).

3.3.3 Start-up and configuration file

At start-up (i.e. when its constructor is invoked, as part of the static initialization phase of
AbclScriptEngineFactory) the ABCL script engine attempts to load an ”init file” from the
classpath (/abcl-script-config.lisp). If present, this file can be used to customize the behavior
of the engine, by setting a number of variables in the ABCL-SCRIPT package. Here is a list of the
available variables:

use-throwing-debugger controls whether ABCL uses a non-standard debugging hook function
to throw a Java exception instead of dropping into the debugger in case of unhandled error
conditions.

e Default value: T

e Rationale: it is more convenient for Java programmers using Lisp as a scripting language
to have it return exceptions to Java instead of handling them in the Lisp world.

e Known Issues: the non-standard debugger hook has been reported to misbehave in
certain circumstances, so consider disabling it if it doesn’t work for you.

xlaunch-swank-at-startup* If true, Swank will be launched at startup. See *swank-dir* and
swank-portx.

e Default value: NIL

swank-dir The directory where Swank is installed. Must be set if *1launch-swank-at-startup*
is true.

http://abcl.org/trac/browser/trunk/abcl/examples/jsr-223
http://abcl.org/trac/browser/trunk/abcl/examples/jsr-223

3.3. JAVA SCRIPTING API (JSR-223) 19

xswank-port* The port where Swank will listen for connections. Must be set if *launch-swank-at-startup*
is true.

e Default value: 4005

Additionally, at startup the AbclScriptEngine will (require ’asdf) - in fact, it uses asdf to
load Swank.

3.3.4 Evaluation

Code is read and evaluated in the package ABCL-SCRIPT-USER. This packages USEs the COMMON-LISP,
JAVA and ABCL-SCRIPT packages. Future versions of the script engine might make this default
package configurable. The CL:LOAD function is used under the hood for evaluating code, and thus
the behavior of LOAD is guaranteed. This allows, among other things, IN-PACKAGE forms to change
the package in which the loaded code is read.

It is possible to evaluate code in what JSR-223 calls a “ScriptContext” (basically a flat environ-
ment of name—value pairs). This context is used to establish special bindings for all the variables
defined in it; since variable names are strings from Java’s point of view, they are first interned
using READ-FROM-STRING with, as usual, ABCL-SCRIPT-USER as the default package. Variables are
declared special because CL’s LOAD, EVAL and COMPILE functions work in a null lexical environment
and would ignore non-special bindings.

Contrary to what the function LOAD does, evaluation of a series of forms returns the value of
the last form instead of T, so the evaluation of short scripts does the Right Thing.

3.3.5 Compilation

AbclScriptEngine implements the javax.script.Compilable interface. Currently it only sup-
ports compilation using temporary files. Compiled code, returned as an instance of javax.script.CompiledScript,
is read, compiled and executed by default in the abcl-script-user package, just like evaluated
code. In contrast to evaluated code, though, due to the way the ABCL compiler works, compiled
code contains no reference to top-level self-evaluating objects (like numbers or strings). Thus,
when evaluated, a piece of compiled code will return the value of the last non-self-evaluating form:
for example the code “(do-something) 42” will return 42 when interpreted, but will return the
result of (do-something) when compiled and later evaluated. To ensure consistency of behavior
between interpreted and compiled code, make sure the last form is always a compound form - at
least (identity some-literal-object). Note that this issue should not matter in real code,
where it is unlikely that a top-level self-evaluating form will appear as the last form in a file (in
fact, the Common Lisp load function always returns t upon success; with JSR-223 this policy
has been changed to make evaluation of small code snippets work as intended).

3.3.6 Invocation of functions and methods

AbclScriptEngine implements the javax.script.Invocable interface, which allows to directly
call Lisp functions and methods, and to obtain Lisp implementations of Java interfaces. This
is only partially possible with Lisp since it has functions, but not methods - not in the tradi-
tional Object Oriented sense, at least, since Lisp methods are not attached to objects but belong
to generic functions. Thus, the method invokeMethod() is not implemented and throws an
UnsupportedOperationException when called. The invokeFunction() method should be used
to call both regular and generic functions.

3.3.7 Implementation of Java interfaces in Lisp

ABCL can use the Java reflection-based proxy feature to implement Java interfaces in Lisp. It
has several built-in ways to implement an interface, and supports definition of new ones. The
JAVA: JMAKE-PROXY generic function is used to make such proxies. It has the following signature:

20 CHAPTER 3. INTERACTION WITH THE HOSTING JVM

jmake-proxy interface implementation &optional lisp-this ==> proxy

interface is a Java interface metaobject (e.g. obtained by invoking jclass) or a string naming
a Java interface. implementation is the object used to implement the interface - several built-in
methods of jmake-proxy exist for various types of implementations. 1isp-this is an object passed
to the closures implementing the Lisp ”methods” of the interface, and defaults to NIL.

The returned proxy is an instance of the interface, with methods implemented with Lisp
functions.

Built-in interface-implementation types include:

e a single Lisp function which, upon invocation of any method in the interface, will be passed
the method name, the Lisp-this object, and all the parameters. Useful for interfaces with a
single method, or to implement custom interface-implementation strategies.

e a hash-map of method-name — Lisp function mappings. Function signature is (1isp-this
&rest args).

e a Lisp package. The name of the Java method to invoke is first transformed in an idiomatic
Lisp name (javaMethodName becomes JAVA-METHOD-NAME) and a symbol with that name is
searched in the package. If it exists and is FBOUND, the corresponding function will be called.
Function signature is as the hash-table case.

This functionality is exposed by the class AbclScriptEngine via the two methods getInterface(Class)
and getInterface(Object, Class). The former returns an interface implemented with the cur-
rent Lisp package, the latter allows the programmer to pass an interface-implementation object
which will in turn be passed to the jmake-proxy generic function.

3.4 Implementation Extension Dictionaries

As outlined by the CLHS ANSI conformance guidelines, we document the extensions to the Armed
Bear Common Lisp implementation made accessible to the user by virtue of being an exported
symbol in the java, threads, or extensions packages. Additional, higher-level information about
the extensions afforded by the implementation can be found in 4 on page 43.

3.4.1 The JAVA Dictionary

The symbols exported from the the JAVA package constitute the primary mechanism to interact
with Java language constructs within the hosting virtual machine.

Modifying the JVM CLASSPATH

The JAVA:ADD-TO-CLASSPATH generic functions allows one to add the specified pathname or list
of pathnames to the current classpath used by ABCL, allowing the dynamic loading of JVM
objects:

CL-USER> (add-to-classpath "/path/to/some.jar")

N.b ADD-TO-CLASSPATH only affects the classloader used by ABCL (the value of the special
variable JAVA:*CLASSLOADER*. It has no effect on JAvA code outside ABCL.
Creating a synthetic Java Class at Runtime

For details on the mechanism available to create a fully synthetic Java class at runtime can be
found in JAVA:JNEW-RUNTIME-CLASS on 3.4.1.

3.4. IMPLEMENTATION EXTENSION DICTIONARIES

— Variable: *java-object-to-string-length* [java]
Length to truncate toString() PRINT-OBJECT output for an otherwise
unspecialized JAVA-OBJECT. Can be set to NIL to indicate no limit.

— Variable: 4false+ [java]

The JVM primitive value for boolean false.

— Variable: 4null4 [java]
The JVM null object reference.

— Variable: +true—+ [java]
The JVM primitive value for boolean true.

— Generic Function: add-to-classpath [java]

Add JAR-OR-JARS to the JVM classpath optionally specifying the CLASS-
LOADER to add.

JAR-OR-JARS is either a pathname designating a jar archive or the
root directory to search for classes or a list of such values.

— Macro: chain [java)

Performs chained method invocations.

TARGET is either the receiver object when the first call is a virtual
method call or a list in the form (:static jjclass;) when the first method call
is a static method call.

OP and each of the OPS are either method designators or lists in the
form (jmethod designator &rest args), where a method designator is either
a string naming a method, or a jmethod object. CHAIN will perform the
method call specified by OP on TARGET; then, for each of the OPS,
CHAIN will perform the specified method call using the object returned
by the previous method call as the receiver, and will ultimately return the
result of the last method call. For example, the form:

(chain (:static ”java.lang.Runtime”) ”getRuntime” ("exec” ”1s”))

is equivalent to the following Java code:

java.lang.Runtime.getRuntime().exec(”1s”);

— Function: classloader [java] &optional java-object

Without a specified JAVA-OBJECT, return the classloader of the current
one
Otherwise return the classloader of the specified JAVA-object.

— Function: context-classloader [java] &optional java-thread

Without a specified JAVA-THREAD, return the context classloader of the
current thread
Otherwise return the context classloader of specified JAVA-THREAD.

— Macro: define-java-class [java]

not-documented

— Function: describe-java-object [java] object stream
Print a human friendly description of Java OBJECT to STREAM.

21

22 CHAPTER 3. INTERACTION WITH THE HOSTING JVM

— Function: dump-classpath [java] &optional classloader

not-documented

— Function: ensure-java-class [java] jclass

Attempt to ensure that the Java class referenced by JCLASS exists in the
current process of the implementation.

— Function: ensure-java-object [java] obj

Ensures OBJ is wrapped in a JAVA-OBJECT, wrapping it if necessary.

— Function: get-current-classloader [java]

not-documented

— Function: get-default-classloader [java]

not-documented

— Function: jarray-component-type [java] atype

Returns the component type of the array type ATYPE

— Function: jarray-from-list [java] list

Return a Java array from LIST whose type is inferred from the first element.
For more control over the type of the array, use JNEW-ARRAY-FROM-
LIST.

— Function: jarray-length [java| java-array

Returns the length of a Java primitive array.

— Function: jarray-ref [java] java-array Erest indices

Dereferences the Java array JAVA-ARRAY using the given INDICES, co-
ercing the result into a Lisp object, if possible.

— Function: jarray-ref-raw [java] java-array Erest indices

Dereference the Java array JAVA-ARRAY using the given INDICES. Does
not attempt to coerce the result into a Lisp object.

— Function: jarray-set [java] java-array new-value &rest indices
Stores NEW-VALUE at the given INDICES in JAVA-ARRAY.

— Class: java-class [java]

not-documented

— Class: java-exception [java]

not-documented

— Function: java-exception-cause [java] java-exception

Returns the cause of JAVA-EXCEPTION. (The cause is the Java Throw-
able object that caused JAVA-EXCEPTION to be signalled.)

3.4. IMPLEMENTATION EXTENSION DICTIONARIES 23

— Class: java-object [java]

not-documented

— Function: java-object-p [java] object
Returns T if OBJECT is a JAVA-OBJECT.

— Function: jcall [java] method-ref instance Erest args

Invokes the Java method METHOD-REF on INSTANCE with arguments
ARGS, coercing the result into a Lisp object, if possible.

— Function: jcall-raw [java] method-ref instance Erest args

Invokes the Java method METHOD-REF on INSTANCE with arguments
ARGS. Does not attempt to coerce the result into a Lisp object.

— Function: jclass [java] name-or-class-ref &optional class-loader

Returns a reference to the Java class designated by NAME-OR-CLASS-
REF. If the CLASS-LOADER parameter is passed, the class is resolved
with respect to the given ClassLoader.

— Function: jclass-array-p [java] class
Returns T if CLASS is an array class

— Function: jclass-constructors [java)] class

Returns a vector of constructors for CLASS

— Function: jclass-field [java] class field-name
Returns the field named FIELD-NAME of CLASS

— Function: jclass-fields [java] class &key declared public

Returns a vector of all (or just the declared/public, if DECLARED /PUB-
LIC is true) fields of CLASS

— Function: jclass-interface-p [java] class
Returns T if CLASS is an interface

— Function: jclass-interfaces [java] class
Returns the vector of interfaces of CLASS

— Function: jclass-methods [java] class &key declared public

Return a vector of all (or just the declared /public, if DECLARED/PUBLIC
is true) methods of CLASS

— Function: jclass-name [java] class-ref Eoptional name

When called with one argument, returns the name of the Java class des-
ignated by CLASS-REF. When called with two arguments, tests whether
CLASS-REF matches NAME.

24 CHAPTER 3. INTERACTION WITH THE HOSTING JVM

— Function: jclass-of [java] object &optional name

Returns the name of the Java class of OBJECT. If the NAME argument
is supplied, verifies that OBJECT is an instance of the named class. The
name of the class or nil is always returned as a second value.

— Function: jclass-superclass [java] class

Returns the superclass of CLASS, or NIL if it hasn’t got one

— Function: jclass-superclass-p [java] class-1 class-2

Returns T if CLASS-1 is a superclass or interface of CLASS-2

— Function: jcoerce [java] object intended-class

Attempts to coerce OBJECT into a JavaObject of class INTENDED-
CLASS. Raises a TYPE-ERROR if no conversion is possible.

— Function: jconstructor [java] class-ref &rest parameter-class-refs

Returns a reference to the Java constructor of CLASS-REF with the given
PARAMETER-CLASS-REFS.

— Function: jconstructor-params [java] constructor

Returns a vector of parameter types (Java classes) for CONSTRUCTOR

— Function: jequal [java] objl obj2
Compares objl with obj2 using java.lang.Object.equals()

— Function: jfield [java] class-ref-or-field field-or-instance &optional instance value

Retrieves or modifies a field in a Java class or instance.

Supported argument patterns:

Case 1: class-ref field-name: Retrieves the value of a static field.

Case 2: class-ref field-name instance-ref: Retrieves the value of a class
field of the instance.

Case 3: class-ref field-name primitive-value: Stores a primitive-value in
a static field.

Case 4: class-ref field-name instance-ref value: Stores value in a class
field of the instance.

Case 5: class-ref field-name nil value: Stores value in a static field (when
value may be confused with an instance-ref).

Case 6: field-name instance: Retrieves the value of a field of the in-
stance. The class is derived from the instance.

Case 7: field-name instance value: Stores value in a field of the instance.
The class is derived from the instance.

— Function: jfield-name [java] field
Returns the name of FIELD as a Lisp string

3.4. IMPLEMENTATION EXTENSION DICTIONARIES 25

— Function: jfield-raw [java] class-ref-or-field field-or-instance Eoptional instance value

Retrieves or modifies a field in a Java class or instance. Does not attempt
to coerce its value or the result into a Lisp object.

Supported argument patterns:

Case 1: class-ref field-name: Retrieves the value of a static field.

Case 2: class-ref field-name instance-ref: Retrieves the value of a class
field of the instance.

Case 3: class-ref field-name primitive-value: Stores a primitive-value in
a static field.

Case 4: class-ref field-name instance-ref value: Stores value in a class
field of the instance.

Case 5: class-ref field-name nil value: Stores value in a static field (when
value may be confused with an instance-ref).

Case 6: field-name instance: Retrieves the value of a field of the in-
stance. The class is derived from the instance.

Case 7: field-name instance value: Stores value in a field of the instance.
The class is derived from the instance.

— Function: jfield-type [java] field
Returns the type (Java class) of FIELD

— Function: jinput-stream [java] pathname
Returns a java.io.InputStream for resource denoted by PATHNAME.

— Function: jinstance-of-p [java] obj class

OBJ is an instance of CLASS (or one of its subclasses)

— Function: jinterface-implementation [java] interface &rest method-names-and-defs

Creates and returns an implementation of a Java interface with methods
calling Lisp closures as given in METHOD-NAMES-AND-DEFS.
INTERFACE is either a Java interface or a string naming one.
METHOD-NAMES-AND-DEFS is an alternating list of method names
(strings) and method definitions (closures).
For missing methods, a dummy implementation is provided that returns
nothing or null depending on whether the return type is void or not. This
is for convenience only, and a warning is issued for each undefined method.

— Function: jmake-invocation-handler [java] function

not-documented

— Generic Function: jmake-proxy [java]

Returns a proxy Java object implementing the provided interface(s) us-
ing methods implemented in Lisp - typically closures, but implementations
are free to provide other mechanisms. You can pass an optional ’lisp-this’
object that will be passed to the implementing methods as their first ar-
gument. If you don’t provide this object, NIL will be used. The second
argument of the Lisp methods is the name of the Java method being im-
plemented. This has the implication that overloaded methods are merged,
so you have to manually discriminate them if you want to. The remaining
arguments are java-objects wrapping the method’s parameters.

26 CHAPTER 3. INTERACTION WITH THE HOSTING JVM

— Function: jmember-protected-p [java] member

MEMBER is a protected member of its declaring class

— Function: jmember-public-p [java] member

MEMBER is a public member of its declaring class

— Function: jmember-static-p [java] member

MEMBER is a static member of its declaring class

— Function: jmethod [java] class-ref method-name &rest parameter-class-refs

Returns a reference to the Java method METHOD-NAME of CLASS-REF
with the given PARAMETER-CLASS-REFS.

— Macro: jmethod-let [javal

not-documented

— Function: jmethod-name [java] method

Returns the name of METHOD as a Lisp string

— Function: jmethod-params [java] method

Returns a vector of parameter types (Java classes) for METHOD

— Function: jmethod-return-type [java] method

Returns the result type (Java class) of the METHOD

— Function: jnew [java] constructor &rest args

Invokes the Java constructor CONSTRUCTOR with the arguments ARGS.

— Function: jnew-array [java] element-type Erest dimensions

Creates a new Java array of type ELEMENT-TYPE, with the given DI-
MENSIONS.

— Function: jnew-array-from-array [java] element-type array

Returns a new Java array with base type ELEMENT-TYPE (a string or a
class-ref) initialized from ARRAY.

— Function: jnew-array-from-list [java] element-type list

Returns a new Java array with base type ELEMENT-TYPE (a string or a
class-ref) initialized from a Lisp list.

3.4. IMPLEMENTATION EXTENSION DICTIONARIES 27

— Function: jnew-runtime-class [java] class-name Erest args Ekey (superclass java.lang. Object)
interfaces constructors methods fields (access-flags (quote (public))) annotations (class-loader (make-
memory-class-loader))

Creates and loads a Java class with methods calling Lisp closures as given
in METHODS. CLASS-NAME and SUPER-NAME are strings, INTER-
FACES is a list of strings, CONSTRUCTORS, METHODS and FIELDS
are lists of constructor, method and field definitions.

Constructor definitions are lists of the form (argument-types function
&optional super-invocation-arguments) where argument-types is a list of
strings and function is a lisp function of (14 (length argument-types))
arguments; the instance (‘this’) is passed in as the last argument. The
optional super-invocation-arguments is a list of numbers between 1 and
(length argument-types), where the number k stands for the kth argument
to the just defined constructor. If present, the constructor of the superclass
will be called with the appropriate arguments. E.g., if the constructor defi-
nition is ((”java.lang.String” ”int”) #’(lambda (string i this) ...) (2 1)) then
the constructor of the superclass with argument types (int, java.lang.String)
will be called with the second and first arguments.

Method definitions are lists of the form

(METHOD-NAME RETURN-TYPE ARGUMENT-TYPES FUNCTION
&key MODIFIERS ANNOTATIONS)

where METHOD-NAME is a string RETURN-TYPE denotes the type
of the object returned by the method ARGUMENT-TYPES is a list of
parameters to the method

The types are either strings naming fully qualified java classes, Lisp
keywords referring to primitive types (:void, :int, etc.), or 2-element lists
where the first element is the keyword :array and the second element is a
keyword referring to a primitive type, e.g. (:array :byte).

FUNCTION is a Lisp function of minimum arity (1+ (length argument-
types)). The instance (‘this’) is passed as the first argument.

Field definitions are lists of the form (field-name type &key modifiers
annotations).

— Function: jnull-ref-p [java] object

Returns a non-NIL value when the JAVA-OBJECT ‘object’ is ‘null‘, or
signals a TYPE-ERROR condition if the object isn’t of the right type.

— Function: jobject-class [java] obj

Returns the Java class that OBJ belongs to

— Function: jobject-lisp-value [java] java-object

Attempts to coerce JAVA-OBJECT into a Lisp object.

— Function: jproperty-value [java] object property

setf-able access on the Java Beans notion of property named PROPETRY
on OBJECT.

— Function: jregister-handler [java] object event handler &key data count

not-documented

28 CHAPTER 3. INTERACTION WITH THE HOSTING JVM

— Function: jresolve-method [java] method-name instance Erest args

Finds the most specific Java method METHOD-NAME on INSTANCE
applicable to arguments ARGS. Returns NIL if no suitable method is found.
The algorithm used for resolution is the same used by JCALL when it is
called with a string as the first parameter (METHOD-REF).

— Function: jrun-exception-protected [java] closure

Invokes the function CLOSURE and returns the result. Signals an error if
stack or heap exhaustion occurs.

— Function: jstatic [java] method class Erest args
Invokes the static method METHOD on class CLASS with ARGS.

— Function: jstatic-raw [java] method class érest args

Invokes the static method METHOD on class CLASS with ARGS. Does
not attempt to coerce the arguments or result into a Lisp object.

— Function: make-classloader [java] &optional parent
not-documented

— Function: make-immediate-object [java] object &optional type
Attempts to coerce a given Lisp object into a java-object of the given type.
If type is not provided, works as jobject-lisp-value. Currently, type may be
:BOOLEAN;, treating the object as a truth value, or :REF, which returns
Java null if NIL is provided.

Deprecated. Please use JAVA:+NULL+, JAVA:+TRUE+, and JAVA:+FALSE+

for constructing wrapped primitive types, JAVA:JOBJECT-LISP-VALUE
for converting a JAVA:JAVA-OBJECT to a Lisp value, or JAVA:JNULL-
REF-P to distinguish a wrapped null JAVA-OBJECT from NIL.

— Function: register-java-exception [java] exception-name condition-symbol
Registers the Java Throwable named by the symbol EXCEPTION-NAME
as the condition designated by CONDITION-SYMBOL. Returns T if suc-
cessful, NIL if not.

— Function: unregister-java-exception [java] ezception-name

Unregisters the Java Throwable EXCEPTION-NAME previously registered
by REGISTER-JAVA-EXCEPTION.

— Macro: with-classloader [java]

Call BODY with optional CLASSLOADER, argument set as the context
classloader

If the CLASSLOADER is not specified, the default classloader is set as
the context classloader.

3.4. IMPLEMENTATION EXTENSION DICTIONARIES 29

3.4.2 The THREADS Dictionary

The extensions for handling multi-threaded execution are collected in the THREADS package. Most
of the abstractions in Doug Lea’s excellent java.util.concurrent packages may be manipulated
directly via the JSS contrib to great effect [Lea98]

Threading Models

The interface afforded by threads:make-thread constructs a thread according to the current value
of THREADS:*THREADING-MODEL*. Nominally such threads are constructed under the the default
:NATIVE value, by which a thread of execution native to the underlying platform is associated
with each LISP-THREAD. When the value :VIRTUAL-THREADS is present in CL:*FEATURES*, the
user may spawn the lighter weight virtual threads by setting THREADS:*THREADING-MODEL* to
:VIRTUAL before invoking the THREADS : MAKE-THREAD interface?.

3This facility is made available at runtime in OPENJDK19 and later when enabled via the runtime
--enable-features flag

30 CHAPTER 3. INTERACTION WITH THE HOSTING JVM

— Variable: *threading-model* [threads]
not-documented

— Function: current-thread [threads]

Returns a reference to invoking thread.

— Function: destroy-thread [threads]

not-documented

— Function: get-java-thread [threads] &optional lisp-thread

Without an argument, return the underlying currently executing Java thread
Specified with a LISP-THREAD, return that thread’s wrapped Java
thread.

— Function: get-mutex [threads| mutex
Acquires the lock associated with the MUTEX

— Function: interrupt-thread [threads] thread function &rest args

Interrupts THREAD and forces it to apply FUNCTION to ARGS. When
the function returns, the thread’s original computation continues. If mul-
tiple interrupts are queued for a thread, they are all run, but the order is
not guaranteed.

— Function: mailbox-empty-p [threads| mailbox

Returns non-NIL if the mailbox can be read from, NIL otherwise.

— Function: mailbox-peek [threads]| mailbox

Returns two values. The second returns non-NIL when the mailbox is
empty. The first is the next item to be read from the mailbox.

Note that due to multi-threading, the first value returned upon peek,
may be different from the one returned upon next read in the calling thread.

— Function: mailbox-read [threads| mailbox

Blocks on the mailbox until an item is available for reading. When an item
is available, it is returned.

— Function: mailbox-send [threads] mailboz item

Sends an item into the mailbox, notifying 1 waiter to wake up for retrieval
of that object.

— Function: make-mailbox [threads] &key ((queue ¢g305716) NIL)

not-documented

— Function: make-mutex [threads] &key ((in-use ¢305979) NIL)

not-documented

— Function: make-thread [threads] function &key name

not-documented

3.4. IMPLEMENTATION EXTENSION DICTIONARIES

— Function: make-thread-lock [threads]
Returns an object to be used with the WITH-THREAD-LOCK macro.

— Function: mapcar-threads [threads]

not-documented

— Function: object-notify [threads] object

Wakes up a single thread that is waiting on OBJECT’s monitor. If any
threads are waiting on this object, one of them is chosen to be awakened.
The choice is arbitrary and occurs at the discretion of the implementation.
A thread waits on an object’s monitor by calling one of the wait methods.

— Function: object-notify-all [threads] object

Wakes up all threads that are waiting on this OBJECT’s monitor. A thread
waits on an object’s monitor by calling one of the wait methods.

— Function: object-wait [threads| object &optional timeout

Causes the current thread to block until object-notify or object-notify-all is
called on OBJECT. Optionally unblock execution after TIMEOUT seconds.
A TIMEOUT of zero means to wait indefinitely. A non-zero TIMEOUT
of less than a nanosecond is interpolated as a nanosecond wait. See the
documentation of java.lang.Object.wait() for further information.

— Function: release-mutex [threads] mutex
Releases a lock associated with MUTEX

— Special Operator: synchronized-on [threads]

not-documented

— Class: thread [threads]

not-documented

— Function: thread-alive-p [threads] thread
Boolean predicate whether THREAD is alive.

— Function: thread-function-wrapper [threads| function
Call FUNCTION with a simple abort restart

— Function: thread-join [threads] thread

Waits for THREAD to die before resuming execution Returns the result
of the joined thread as its primary value. Returns T if the joined thread
finishes normally or NIL if it was interrupted.

— Function: thread-name [threads]

not-documented

— Function: threadp [threads]

not-documented

31

32 CHAPTER 3. INTERACTION WITH THE HOSTING JVM

— Macro: with-mutex [threads]
Acquires a lock on MUTEX, executes BODY, and then releases the lock

— Macro: with-thread-lock [threads]
Acquires the LOCK, executes BODY and releases the LOCK

— Function: yield [threads]
A hint to the scheduler that the current thread is willing to yield its current
use of a processor. The scheduler is free to ignore this hint.
See java.lang.Thread.yield().

3.4. IMPLEMENTATION EXTENSION DICTIONARIES 33

3.4.3 The EXTENSIONS Dictionary

The symbols in the extensions package (often referenced by its shorter nickname ext) constitutes
extensions to the ANSI standard that are potentially useful to the user. They include functions
for manipulating network sockets, running external programs, registering object finalizers, con-
structing reference weakly held by the garbage collector and others.

See [Rho09] for a generic function interface to the native JVM contract for java.util.List.

34 CHAPTER 3. INTERACTION WITH THE HOSTING JVM

— Macro: %caddr [extensions]

not-documented

— Macro: %cadr [extensions]

not-documented

— Macro: %car [extensions]

not-documented

— Macro: %cdr [extensions]

not-documented

— Variable: *autoload-verbose* [extensions]

not-documented

— Variable: *batch-mode* [extensions]

not-documented

— Variable: *command-line-argument-list* [extensions]

not-documented

— Variable: *debug-condition* [extensions]

not-documented

— Variable: *debug-level* [extensions

not-documented

— Variable: *disassembler* [extensions]

not-documented

— Variable: *ed-functions® [extensions]

not-documented

— Variable: *enable-inline-expansion* [extensions]

not-documented

— Variable: *inspector-hook* [extensions

not-documented

— Variable: *lisp-home* [extensions]

not-documented

— Variable: *load-truename-fasl* [extensions]

not-documented

— Variable: *print-structure* [extensions

not-documented

3.4. IMPLEMENTATION EXTENSION DICTIONARIES 35

— Variable: *require-stack-frame* [extensions]
not-documented

— Variable: *saved-backtrace* [extensions]
not-documented

— Variable: *suppress-compiler-warnings* [extensions]
not-documented

— Variable: *warn-on-redefinition* [extensions]
not-documented

— Function: add-package-local-nickname [extensions| local-nickname actual-package Eop-
tional (package-designator *package*)
not-documented

— Function: adjoin-eql [extensions] item list
not-documented

— Function: arglist [extensions| extended-function-designator
not-documented

— Function: as-jar-pathname-archive [extensions|
not-documented

— Function: assq [extensions]
not-documented

— Function: assql [extensions]
not-documented

— Function: autoload [extensions] symbol-or-symbols Eoptional filename

Setup the autoload for SYMBOL-OR-SYMBOLS optionally corresponding
to FILENAME.

— Function: autoload-macro [extensions]
not-documented

— Function: autoload-ref-p [extensions| symbol

Boolean predicate for whether SYMBOL has generalized reference functions
which need to be resolved.

— Function: autoload-setf-expander [extensions] symbol-or-symbols filename

Setup the autoload for SYMBOL-OR-SYMBOLS on the setf-expander from
FILENAME.

— Function: autoload-setf-function [extensions| symbol-or-symbols filename

Setup the autoload for SYMBOL-OR-SYMBOLS on the setf-function from
FILENAME.

36 CHAPTER 3. INTERACTION WITH THE HOSTING JVM

— Function: autoloadp [extensions] symbol

Boolean predicate for whether SYMBOL stands for a function that cur-
rently needs to be autoloaded.

— Function: cancel-finalization [extensions] object
not-documented

— Function: char-to-utf8 [extensions]
not-documented

— Function: charpos [extensions| stream
not-documented

— Function: classp [extensions|
not-documented

— Macro: collect [extensions]

Collect ((Name [Initial-Value] [Function])*) Form* Collect some values
somehow. Each of the collections specifies a bunch of things which col-
lected during the evaluation of the body of the form. The name of the
collection is used to define a local macro, a la MACROLET. Within the
body, this macro will evaluate each of its arguments and collect the result,
returning the current value after the collection is done. The body is evalu-
ated as a PROGN; to get the final values when you are done, just call the
collection macro with no arguments.

Initial-Value is the value that the collection starts out with, which de-
faults to NIL. Function is the function which does the collection. It is a
function which will accept two arguments: the value to be collected and
the current collection. The result of the function is made the new value
for the collection. As a totally magical special-case, the Function may be
Collect, which tells us to build a list in forward order; this is the default. If
an Initial-Value is supplied for Collect, the stuff will be rplacd’d onto the
end. Note that Function may be anything that can appear in the functional
position, including macros and lambdas.

— Function: compile-system [extensions] &key quit (zip t) (cls-ext *compile-file-class-extension™)
(abcl-ext *compile-file-type*) output-path
not-documented

— Variable: double-float-negative-infinity [extensions]

not-documented

— Variable: double-float-positive-infinity [extensions]
not-documented

— Function: dump-java-stack [extensions]
not-documented

— Function: exit [extensions| &key status
not-documented

3.4. IMPLEMENTATION EXTENSION DICTIONARIES 37

— Function: featurep [extensions| form
not-documented

— Function: file-directory-p [extensions] pathspec &key (wild-error-p t)
not-documented

— Function: finalize [extensions| object function
not-documented

— Function: fixnump [extensions]
not-documented

— Function: gc [extensions]
not-documented

— Function: get-floating-point-modes [extensions]
not-documented

— Function: get-pid [extensions]
Get the process identifier of this lisp process.
Used to be in SLIME but generally useful, so now back in ABCL proper.

— Function: get-socket-stream [extensions| socket &key (element-type (quote character))
(external-format default)

:ELEMENT-TYPE must be CHARACTER or (UNSIGNED-BYTE 8); the
default is CHARACTER. EXTERNAL-FORMAT must be of the same
format as specified for OPEN.

— Function: get-time-zone [extensions| time-in-millis
Returns as the first value the timezone difference in hours from the Green-
wich meridian for TIME-IN-MILLIS via the Daylight Savings Time as-
sumptions that were in place at the instant’s occurance. Returns as the
second value a boolean as to whether daylight savings time was in effect at
the occurance.

— Function: getenv [extensions]| variable

Return the value of the environment VARIABLE if it exists, otherwise
return NIL.

— Function: getenv-all [extensions] variable
Returns all environment variables as an alist containing (name . value)

— Function: init-gui [extensions|
not-documented

— Function: interrupt-lisp [extensions]
not-documented

— Class: jar-pathname [extensions]
not-documented

38 CHAPTER 3. INTERACTION WITH THE HOSTING JVM

— Function: macroexpand-all [extensions] form &optional env

not-documented

— Class: mailbox [extensions

not-documented

— Function: make-dialog-prompt-stream [extensions]

not-documented

— Function: make-server-socket [extensions] port

Create a TCP server socket listening for clients on PORT.

— Function: make-slime-input-stream [extensions] function output-stream

not-documented

— Function: make-slime-output-stream [extensions] function

not-documented

— Function: make-socket [extensions] host port
Create a TCP socket for client communication to HOST on PORT.

— Function: make-temp-directory [extensions]

Create and return the pathname of a previously non-existent directory.

— Function: make-temp-file [extensions| &key prefic suffic

Create and return the pathname of a previously non-existent file.

— Function: make-weak-reference [extensions] obj

not-documented

— Function: memgq [extensions]| item list

not-documented

— Function: memgql [extensions| item list

not-documented

— Variable: most-negative-java-long [extensions

not-documented

— Variable: most-positive-java-long [extensions]

not-documented

— Class: mutex [extensions]

not-documented

— Function: neq [extensions] obj! obj2

not-documented

3.4. IMPLEMENTATION EXTENSION DICTIONARIES 39

— Class: nil-vector [extensions]
not-documented

— Function: os-unix-p [extensions]

Is the underlying operating system some Unix variant?

— Function: os-windows-p [extensions]

Is the underlying operating system Microsoft Windows?

— Function: package-local-nicknames [extensions] package

not-documented

— Function: package-locally-nicknamed-by-list [extensions] package

not-documented

— Function: pathname-jar-p [extensions|

not-documented

— Function: pathname-url-p [extensions] pathname
Predicate for whether PATHNAME references a URL.

— Function: precompile [extensions| name &optional definition
not-documented

— Function: probe-directory [extensions| pathspec
not-documented

— Function: quit [extensions] &key status
not-documented

— Function: read-class [extensions] pathname
Read the file at PATHNAME as a Java byte[] array

— Function: read-timeout [extensions] socket seconds

Time in SECONDS to set local implementation of ’'SO_RCVTIMEQO’ on
SOCKET.

— Function: remove-package-local-nickname [extensions| old-nickname Eoptional package-
designator

not-documented

— Function: resolve [extensions| symbol

Resolve the function named by SYMBOL via the autoloader mechanism.
Returns either the function or NIL if no resolution was possible.

— Function: run-shell-command [extensions] command &key directory (output *standard-
output*®)
not-documented

40 CHAPTER 3. INTERACTION WITH THE HOSTING JVM

— Function: server-socket-close [extensions| socket
Close the server SOCKET.

— Function: set-floating-point-modes [extensions] &key traps

not-documented

— Function: show-restarts [extensions| restarts stream
not-documented

— Function: simple-string-fill [extensions]
not-documented

— Function: simple-string-search [extensions]
not-documented

— Variable: single-float-negative-infinity [extensions]

not-documented

— Variable: single-float-positive-infinity [extensions]
not-documented

— Class: slime-input-stream [extensions
not-documented

— Class: slime-output-stream [extensions]
not-documented

— Function: socket-accept [extensions| socket

Block until able to return a new socket for handling a incoming request to
the specified server SOCKET.

— Function: socket-close [extensions| socket
Close the client SOCKET.

— Function: socket-local-address [extensions] socket
Returns the local address of the SOCKET as a dotted quad string.

— Function: socket-local-port [extensions| socket
Returns the local port number of the SOCKET.

— Function: socket-peer-address [extensions]| socket
Returns the peer address of the SOCKET as a dotted quad string.

— Function: socket-peer-port [extensions]| socket
Returns the peer port number of the given SOCKET.

— Function: source [extensions]
not-documented

3.4. IMPLEMENTATION EXTENSION DICTIONARIES

— Function: source-file-position [extensions]
not-documented

— Function: source-pathname [extensions| symbol

Returns either the pathname corresponding to the file from which this
symbol was compiled,or the keyword :TOP-LEVEL.

— Function: special-variable-p [extensions]
not-documented

— Function: stream-unix-fd [extensions] stream

Return the integer of the underlying unix file descriptor for STREAM
Added by ABCL-INTROSPECT.

— Function: string-find [extensions| char string
not-documented

— Function: string-input-stream-current [extensions| stream
not-documented

— Function: string-position [extensions]
not-documented

— Function: style-warn [extensions| format-control €rest format-arguments
not-documented

— Macro: truly-the [extensions]
not-documented

— Function: uptime [extensions]
not-documented

— Function: uri-decode [extensions]
not-documented

— Function: uri-encode [extensions]
not-documented

— Class: url-pathname [extensions]
not-documented

— Function: url-pathname-authority [extensions] p
not-documented

— Function: url-pathname-fragment [extensions] p
not-documented

— Function: url-pathname-query [extensions] p
not-documented

41

42 CHAPTER 3. INTERACTION WITH THE HOSTING JVM

— Function: url-pathname-scheme [extensions] p
not-documented

— Class: weak-reference [extensions]
not-documented

— Function: weak-reference-value [extensions| obj

Returns two values, the first being the value of the weak ref the second T
if the reference is valid, or NIL if it hasbeen cleared.

— Function: write-class [extensions]| class-bytes pathname
Write the Java byte[] array CLASS-BYTES to PATHNAME.

— Function: write-timeout [extensions] socket seconds
No-op setting of write timeout to SECONDS on SOCKET.

Chapter 4

Beyond ANSI

Naturally, in striving to be a useful contemporary COMMON LisP implementation, ABCL en-
deavors to include extensions beyond the ANSI specification which are either widely adopted or
are especially useful in working with the hosting JVM. This chapter documents such extensions
beyond ANSI conformation.

4.1 Compiler to Java Virtual Machine Bytecode

The CL:COMPILE-FILE interface emits a packed fasl ! format whose CL:PATHNAME has the TYPE
“abcl”. Structurally, ABCL’s fasls are operating system neutral byte archives packaged in the
zip compression format which contain artifacts whose loading CL:LOAD understands. Internally,
our fasls contain a piece of Lisp that CL:LOAD interprets as instructions to load the Java classes
emitted by the ABCL Lisp compiler. The classes emitted by the ABCL compiler have a JVM
class file version of “49.0”.

4.1.1 Compiler Diagnostics

By default, the interface to the compiler does not signal warnings that result in its invocation, out-
puting diagnostics to the standard reporting stream. The generalized boolean JVM: *RESIGNAL-COMPILER-WARNINGS*
provides the interface to enabling the compiler to signal all warnings.

4.1.2 Decompilation

Since ABCL compiles to JVM bytecode, the CL:DISASSEMBLE function provides introspection
for the result of that compilation. By default the implementation attempts to find and use the
javap command line tool shipped as part of the Java Development Kit to disassemble the results.
Code for the use of additional JVM bytecode introspection tools is packaged as part of the ABCL-
INTROSPECT contrib. After loading one of these tools via ASDF, the SYS: CHOOSE-DISASSEMBLER
function can be used to select the tool used by CL:DISASSEMBLE. See 5.5.1 on 53 for further details.

4.2 Pathname

ABCL extends its implementation of ANSI PATHNAME objects in order to allow read-only access
to sources of bytes available via URIs 2 and to enable the addressing of arbitrarily recursive entries

1The term “fasl” is short for “fast loader”, which in CoMMON LiSP implementations refers

2A URI is essentially a super-set of what is commonly understood as a URL. We sometimes use the term URL
as shorthand in describing the URL Pathnames, even though the corresponding encoding is more akin to a URI as
described in RFC3986 [BLFMO5).

43

44 CHAPTER 4. BEYOND ANSI

within ZIP archives. These implementation decisions are encapsulated by the specialization of
CL:PATHNAME as the EXT:URL-PATHNAME and the EXT:JAR-PATHNAME types.

Oprefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
Oprefix ext: <http://abcl.org/cl/package/extensions/> .

@prefix cl: <http://abcl.org/cl/package/common-lisp/> .
<ext:jar-pathname> rdfs:subClass0f <ext:url-pathname> .
<ext:url-pathname> rdfs:subClass0f <cl:pathname> .

<cl:logical-pathname> rdfs:subClass0f <cl:pathname> .

The EXT:URL-PATHAME object utilizes the standard JVM implementation of java.net.URL
to access resources named by the “file”, “http”, “https”, “jar”, and “ftp” schemes. Additional
protocol handlers for other may be installed at runtime by having JVM symbols present in the
sun.net.protocol.dynamic® The namestring of a EXT:URL-PATHNAME object is equivalent to the
string serialization of its representation encoded via the “percent encoding” rules of URIs*.

The EXT:JAR-PATHNAME extension utilizes the specialization of EXT:URL-PATHNAME to provide
access to components of ZIP archives, of which the JAR (Java ARchive) format is a super-set. °
JAR archives are typically used to aggregate many Java class files and associated metadata and
resources (text, images, etc.) into one file for distribution. ABCL is typically packaged as a JAR
archive and emits its fasls as ZIP files.

Both the EXT: URL-PATHNAME and EXT: JAR-PATHNAME specializations may be broadly used any-
where a CL:PATHNAME is accepted with the general caveat that stream obtained via CL:0PEN on
either sub-type cannot be the target of write operations.

URL-PATHNAME

A URL-PATHNAME denotes a source of bytes addressable by its corresponding namestring interpreted
as a URL

A EXT:URL-PATHNAME always has a HOST component that is a property list. The values of the
HOST property list are always character strings. The allowed keys have the following meanings:

:SCHEME Scheme of URI ("http”, "ftp”, “bundle”, etc.)

:AUTHORITY Valid authority according to the URI scheme. For "http” this could be ”exam-
ple.org:8080”.

:QUERY The query of the URI
:FRAGMENT The fragment portion of the URI

If the :SCHEME property is missing, it is assumed to be “file” denoting a reference to a file
on the local file-system and will be normalized as such in any pathname subjected to TRUENAME
resolution.
In order to encapsulate the implementation decisions for these meanings, the following functions
provide a SETF-able API for reading and writing such values: URL-PATHNAME-QUERY, URL-PATHNAME-FRAGMENT,
URL-PATHNAME-AUTHORITY, and URL-PATHNAME-SCHEME. The specific sub-type of a Pathname may
be determined with the predicates PATHNAME-URL-P and PATHNAME-JAR-P.
Any results of canonicalization procedures performed on a object of type EXT:URL-PATHNAME
via local or network resolutions discarded between attempts (i.e. the implementation does not
attempt to cache the results of current name resolution of the URI for underlying resource unless

3See [Mas00] for more details. https://stackoverflow.com/questions/41784555/
print-all-supported-url-schemes-in-java8 contains a more up-to-date description.

4See https://url.spec.whatwg.org/#percent-encoded-bytes for a description of this process.

5JAR archive utilize the ZIP format for packing and compression adding procedures to add supporting metadata
in a manifest which is standardized text file stored at a canonical location within the archive.

https://stackoverflow.com/questions/41784555/print-all-supported-url-schemes-in-java8
https://stackoverflow.com/questions/41784555/print-all-supported-url-schemes-in-java8
https://url.spec.whatwg.org/#percent-encoded-bytes

4.3. PACKAGE-LOCAL NICKNAMES 45

it is requested to be resolved.) Upon resolution, any canonicalization procedures followed in re-
solving the resource (e.g. following redirects) are discarded. Users may programatically initiate
a new, local computation of the resolution of the resource by applying the CL:TRUENAME function
to a EXT:URL-PATHNAME object. Depending on the reliability and properties of your local REST
infrastructure, these results may not necessarily be idempotent over time®. A future implementa-
tion may attempt to expose an API to observer/customize the content negotiation initiated during
retrieval of the representation of a given resource, which is currently handled at the application
level.

The implementation of EXT:URL-PATHNAME allows the ABCL user to dynamically load code
from the network. For example, QUICKLISP ([Bea]) may be completely installed from the REPL
to download and execute the Quicklisp setup code via:

CL-USER> (load "https://beta.quicklisp.org/quicklisp.lisp")

JAR-PATHNAME

In ABCL, the DEVICE can be either a string either denoting a drive letter or a UNC mount under
DOS or a list of one or more elements. If DEVICE is a list, it denotes a EXT: JAR-PATHNAME.

The implementation extends the ANSI specification with EXT:JAR-PATHNAME by utiliz-
ing its DEVICE to contain a list of pathnames denoting the location of and relative address within a
ZIP archive. The first member of this list will be a EXT:URL-PATHNAME designates the root source
of bytes encoded via the ZIP compression algorithm. This reference can either be to a file located
on the local file-system or as a remote source via an stream-oriented messaging protocol such as
HTTPS. The remainder of the DEVICE list contains “traditional” CL:PATHNAME objects denoting
successive relative archive paths. This allows pathnames to reference an entry in an arbitrarily
nested ZIP archives, which is the case when the an ABCL fasl is included in in a jar archive.

In order to implement useful behavior of merging with pathname defaults, the implementation
will contain the :UNSPECIFIC keyword in any TRUENAME that wasn’t explicitly merging with
a EXT:JAR-PATHNAME. Therefore, the implementation extends the semantics for the usual merge
semantics when *DEFAULT-PATHNAME-DEFAULTS* contains a EXT: JAR-PATHNAME with the “do what
I mean” algorithm described in 1.1 on page 7.

The namestring representation of EXT:JAR-PATHNAME references use successive “jar” prefixes
and corresponding “!” suffixes to encapsulate successive locations. Described broadly, a EXT: JAR-PATHNAME
encapsulates the URL describing the location of the archive and a possible entry within that
archive.

jar:<url>!/[<entry>]

The URL usually has the “file” scheme, but remote locations expressed in the “https” or
“http” are also allowed.

Subsequent entries within an archive are denoted via prefixing additional “jar” schemes and
suffixing the associated path.

jar:jar:<url>!/<entry0>!/[<entry1>]
jar:jar:jar:<url>!/<entry0>!/<entryl>!/[<entry2>]

4.3 Package-Local Nicknames

ABCL allows giving packages local nicknames which allow short and easy-to-use names to be used
without fear of name conflict associated with normal nicknames.”

A local nickname is valid only when inside the package for which it has been specified. Different
packages can use same local nickname for different global names, or different local nickname for
same global name.

6See [Evell] for the design and implementation notes for the technical details
"Package-local nicknames were originally developed in SBCL.

46 CHAPTER 4. BEYOND ANSI

Symbol :package-local-nicknames in *features* denotes the support for this feature.

The options to defpackage are extended with a new option :local-nicknames (local-nickname
actual-package-name) *.

The new package has the specified local nicknames for the corresponding actual packages.

Example:

(defpackage :bar (:intern "X"))

(defpackage :foo (:intern "X"))

(defpackage :quux (:use :cl)
(:local-nicknames (:bar :foo) (:foo :bar)))

(find-symbol "X" :foo) ; => FO0O::X

(find-symbol "X" :bar) ; => BAR::X

(let ((*packagex* (find-package :quux)))

(find-symbol "X" :foo0)) ; => BAR::X
(let ((*package* (find-package :quux)))
(find-symbol "X" :bar)) ; => FOO::X

— Function: package-local-nicknames [ext]| package-designator

Returns an ALIST of (local-nickname . actual-package) describing
the nicknames local to the designated package.

When in the designated package, calls to find-package with any of the
local-nicknames will return the corresponding actual-package instead. This
also affects all implied calls to find-package, including those performed
by the reader.

When printing a package prefix for a symbol with a package local nick-
name, the local nickname is used instead of the real name in order to
preserve print-read consistency.

— Function: package-locally-nicknamed-by-list [ext] package-designator

Returns a list of packages which have a local nickname for the designated
package.

— Function: add-package-local-nickname [ext] local-nickname actual-package Eoptional
package-designator

Adds local-nickname for actual-package in the designated package, de-
faulting to current package. local-nickname must be a string designator,
and actual-package must be a package designator.

Returns the designated package.

Signals an error if local-nickname is already a package local nickname
for a different package, or if local-nickname is one of "CL”, ”COMMON-
LISP”, or, ’" KEYWORD?”, or if local-nickname is a global name or nick-
name for the package to which the nickname would be added.

When in the designated package, calls to find-package with the local-nickname
will return the package the designated actual-package instead. This also
affects all implied calls to find-package, including those performed by the
reader.

When printing a package prefix for a symbol with a package local nick-
name, local nickname is used instead of the real name in order to preserve
print-read consistency.

— Function: remove-package-local-nickname [ext] old-nickname &optional package-designator

If the designated package had old-nickname as a local nickname for an-
other package, it is removed. Returns true if the nickname existed and was
removed, and nil otherwise.

4.4. EXTENSIBLE SEQUENCES 47

4.4 Extensible Sequences

The SEQUENCE package fully implements Christopher Rhodes’ proposal for extensible sequences.

These user extensible sequences are used directly in java-collections.lisp provide these CLOS

abstractions on the standard Java collection classes as defined by the java.util.List contract.
This extension is not automatically loaded by the implementation. It may be loaded via:

CL-USER> (require :java-collections)
if both extensible sequences and their application to Java collections is required, or
CL-USER> (require :extensible-sequences)

if only the extensible sequences API as specified in [Rho09] is required.

Note that (require :java-collections) must be issued before java.util.List or any sub-
class is used as a specializer in a CLOS method definition (see the section below).

See Rhodes2007 [Rho09] for the an overview of the abstractions of the java.util.collection
package afforded by JAVA-COLLECTIONS.

4.5 Extensions to CLOS

4.5.1 Metaobject Protocol

ABCL implements the metaobject protocol for CLOS as specified in (A)MOP. The symbols are
exported from the package MOP.
Contrary to the AMOP specification and following SBCL’s lead, the metaclass funcallable-standard-object
has funcallable-standard-class as metaclass instead of standard-class.
ABCL’s fidelity to the AMOP specification is codified as part of Pascal Costanza’s closer-mop
?? [Cosll].

4.5.2 Specializing on Java classes

There is an additional syntax for specializing the parameter of a generic function on a java class,
viz. (java:jclass CLASS-STRING) where CLASS-STRING is a string naming a Java class in dotted
package form.

For instance the following specialization would perhaps allow one to print more information
about the contents of a java.util.Collection object

(defmethod print-object ((coll (java:jclass "java.util.Collection"))
stream)

If the class had been loaded via a classloader other than the original the class you wish to
specialize on, one needs to specify the classloader as an optional third argument.

(defparameter *other-classloaderx*
(jcall "getBaseLoader" cl-user::*classpath-managerx*))

(defmethod print-object
((device-id (java:jclass "dto.nbi.service.hdm.alcatel.com.NBIDeviceID"
x*other-classloader*))
stream)

ERE A

48 CHAPTER 4. BEYOND ANSI

4.5.3 Subtypes of mop:specializer

The implementation allows generic method specializers which extend the mop:specializer type.
See [NROS] for justification and usage examples for such an abstraction.

4.6 Extensions to the Reader

We implement a special hexadecimal escape sequence for specifying 32 bit characters to the Lisp
reader®, namely we allow a sequences of the form #\Uzzzz to be processed by the reader as
character whose code is specified by the hexadecimal digits zzzz. The hexadecimal sequence may
be one to four digits long.

Note that that the reader escaped sequence is never output by the implementation. Instead, the
implementation emits the bytes corresponding Unicode character is output for characters whose
code is greater than 0x00ff.

4.7 Overloading of the CL:REQUIRE Mechanism

The CL:REQUIRE mechanism is overloaded by attaching the following behavior to the execution of
REQUIRE on these symbols:

ASDF
Loads the ASDF version shipped with the implementation. After the evaluation of this
symbols, symbols passed to CL:REQUIRE which are otherwise unresolved, are passed to ASDF
for a chance for resolution. This means, for instance if CL-PPCRE can be located as a loadable
ASDF system (require :cl-ppcre) is equivalent to (asdf:load-system :cl-ppcre).

ABCL-CONTRIB
Locates and pushes the top-level contents of “abcl-contrib.jar” into the ASDF central reg-
istry.

abcl-asdf
Functions for loading JVM artifacts dynamically by extending ASDF. See 5.1 on page
51.

asdf-jar
Package addressable JVM artifacts via abcl-asdf descriptions as a single binary arti-
fact including recursive dependencies. See 7?7 on page 52.

jna Allows the Java Native Interface (JNI) facility to provide C-style linkage to other

operating system shared objects by dynamically loading the ’jna.jar’ artifact via Maven®
quicklisp-abcl

Loads QUICKLISP by possibly initiating a network download via EXT:URL-PATHMAME.
jf1i

A descendant of Rich Hickey’s pre-Clojure work on the JVM.

jss Introduces dynamic inspection of present symbols via the SHARPSIGN-QUOTATION_MARK
macros as Java Syntax Sucks. See 5.3 on page 77 for more details.

abcl-introspect
Provides a framework for introspecting runtime Java and Lisp object values. Include
packaging for installing and using java decompilation tools for use with CL: DISASSEMBLE.
See 5.5 on 53 for further information.

8This represents a compromise with contemporary in 2011 32bit hosting architectures for which we wish to
make text processing efficient. Should the User require more control over UNICODE processing we recommend
Edi Weisz’ excellent work with —FLEXI-STREAMS which we fully support

9This loading can be inhibited if, at runtime, the Java class corresponding “:classname” clause of the system
definition is present.

4.8. JSS EXTENSION OF THE READER BY SHARPSIGN-DOUBLE-QUOTE 49

abcl-build
Provides a toolkit for building ABCL from source, as well as installing the necessary
tools for such builds. See 5.6 on page 55.

named-readtables
Provides a namespace for readtables akin to the already-existing namespace of packages.
See 5.7 on 55 for further information.

posix-syscalls
Provides and demonstrates the scaffolding for extending the implementation by use of
direct syscalls via the foreign function interface (FFI) afforded by the JNA library. Upon
loading this system, new implementations of the EXT:GETENV and UIOP/0S:GETENV
functions are installed which use FFI to directly call the POSIX SYSCALLS WHERE AVAIL-
ABLE, WHICH ALLOWS ENVIRONMENT VARIABLES TO BE SET.

The user may extend the CL:REQUIRE mechanism by pushing function hooks into SYSTEM: *MODULE-PROVIDER-FUNCTIO
Each such hook function takes a single argument containing the symbol passed to CL:REQUIRE
and returns a non-NIL value if it can successful resolve the symbol.

4.8 JSS extension of the Reader by SHARPSIGN-DOUBLE-
QUOTE

The JSS contrib constitutes an additional, optional extension to the reader in the definition of the
SHARPSIGN-DOUBLE-QUOTE (“#”’) reader macro. See section 5.3 on page 52 for more information.

4.9 ASDF

asdf-3.3.7 (see [RBRK]) is packaged as core component of ABCL, but not loaded by default, as
it relies on the CLOS subsystem which can take a bit of time to start '°. The packaged ASDF
may be loaded by the ANSI REQUIRE mechanism as follows:

CL-USER> (require :asdf)

4.10 Extension to CL:MAKE-ARRAY

With the :nio feature is present!!, the implementation adds two keyword arguments to c1:make-array,
viz. :nio-buffer and :nio-direct.

With the :nio-buffer keyword, the user is able to pass instances of of java.nio.ByteBuffer
and its subclasses for the storage of vectors and arrays specialized on the byte-vector types satis-

fying
(or
(unsigned-byte 8)
(unsigned-byte 16)
(unsigned-byte 32))

As an example, the following would use the :nio-buffer as follows to create a 16 byte vector
using the created byte-buffer for storage:

(let* ((length 16)
(byte-buffer (java:jstatic "allocate" "java.nio.ByteBuffer" length)))
(make-array length :element-type °’(unsigned-byte 8) :nio-buffer byte-buffer))

10While this time is “merely” on the order of seconds for contemporary 2011 machines, for applications that need
to initialize quickly, for example a web server, this time might be unnecessarily long
I Available starting in the Eighth Edition (aka abcl-1.7.0) and indicated by the presence of :nio in cl:*features*

o0 CHAPTER 4. BEYOND ANSI

This feature is available in CFFI'? via CFFI-SYS:MAKE-SHAREABLE-BYTE-VECTOR!®

:nio-buffer NIO-BUFFER
Initializes the contents of the new vector or array with the contents of NIO-BUFFER which
needs to be a reference to a java-object of class java.nio.ByteBuffer.

:nio-direct NIO-DIRECT-P
‘When NIO-DIRECT-P is non-nil, constructs a java.nio.Buffer as a “direct” buffer. The buffers
returned by this method typically have somewhat higher allocation and deallocation costs
than non-direct buffers. The contents of direct buffers may reside outside of the normal
garbage-collected heap, and so their impact upon the memory footprint of an application
might not be obvious. It is therefore recommended that direct buffers be allocated primarily
for large, long-lived buffers that are subject to the underlying system’s native I/O operations.
In general it is best to allocate direct buffers only when they yield a measurable gain in
program performance.

12 Available at runtime via QUICKLISP
BImplemented in https://github.com/cffi/cffi/commit/47136ad9a97c2df98dbcd13a068e14489ced5b03

https://github.com/cffi/cffi/commit/47136ad9a97c2df98dbcd13a068e14489ced5b03

Chapter 5

Contrib

The ABCL contrib is packaged as a separate jar archive usually named abcl-contrib.jar or
possibly something like abcl-contrib-1.10.0.jar. The contrib jar is not loaded by the imple-
mentation by default, and must be first initialized by the REQUIRE mechanism before using any
specific contrib:

CL-USER> (require :abcl-contrib)

5.1 abcl-asdf

This contrib enables an additional syntax for ASDF system definition which dynamically loads
JVM artifacts such as jar archives via encapsulation by the Maven build tool. The Maven Aether
component can also be directly manipulated by the function associated with the ABCL-ASDF : RESOLVE-DEPENDENCIES
symbol.

When loaded, ABCL-ASDF adds the following objects to ASDF: JAR-FILE, JAR-DIRECTORY,
CLASS-FILE-DIRECTORY and MVN, exporting them (and others) as public symbols.

5.1.1 Referencing Maven Artifacts via ASDF

Maven artifacts may be referenced within ASDF system definitions, as the following example ref-
erences the logdj-1.4.9.jar JVM artifact which provides a widely-used abstraction for handling
logging systems:

;555 —%- Mode: LISP -*-

(require :asdf)
(in-package :cl-user)

(asdf :defsystem :logédj
:defsystem-depends-on (abcl-asdf)
:components ((:mvn "log4j/logd4j" :version "1.4.9")))

5.1.2 API

We define an API for ABCL-ASDF as consisting of the following ASDF classes:
JAR-DIRECTORY, JAR-FILE, and CLASS-FILE-DIRECTORY for JVM artifacts that have a cur-
rently valid pathname representation.
Both the MVN and IRI classes descend from ASDF-COMPONENT, but do not directly have a file-
system location.

o1

52 CHAPTER 5. CONTRIB

For use outside of ASDF system definitions, we currently define one method, ABCL-ASDF : RESOLVE-DEPENDENCIES
which locates, downloads, caches, and then loads into the currently executing JVM process all re-
cursive dependencies annotated in the Maven pom.xml graph.

5.1.3 Directly Instructing Maven to Download JVM Artifacts

Bypassing ASDF, one can directly issue requests for the Maven artifacts to be downloaded

CL-USER> (abcl-asdf:resolve-dependencies "com.google.guwt"

"gwt-user")
WARNING: Using LATEST for unspecified version.
"/Users/evenson/.m2/repository/com/google/gwt/guwt-user/2.9.0/gwt-user-2.9
.0.jar:/Users/evenson/.m2/repository/com/google/jsinterop/jsinterop-annot
ations/2.0.0/jsinterop-annotations-2.0.0. jar:/Users/evenson/.m2/repositor
y/javax/validation/validation-api/1.0.0.GA/validation-api-1.0.0.GA. jar:/U
sers/evenson/.m2/repository/javax/validation/validation-api/1.0.0.GA/vali
dation-api-1.0.0.GA-sources. jar:/Users/evenson/.m2/repository/javax/servl
et/javax.servlet-api/3.1.0/javax.servlet-api-3.1.0.jar:/Users/evenson/.m2
/repository/org/w3c/css/sac/1.3/sac-1.3. jar"

To actually load the dependency into the current process, use the JAVA:ADD-TO-CLASSPATH
generic function:

CL-USER> (java:add-to-classpath
(abcl-asdf :resolve-dependencies "com.google.guwt"
"gwt-user"))

Notice that all recursive dependencies have been located and installed locally from the network
as well.

More extensive documentations and examples can be found at http://abcl.org/svn/tags/
1.10.0/contrib/abcl-asdf/README .markdown.

5.2 asdf-jar

The asdf-jar contrib provides a system for packaging ASDF systems into jar archives for ABCL.
Given a running ABCL image with loadable ASDF systems the code in this package will recur-
sively package all the required source and fasls in a jar archive.

The documentation for this contrib can be found at http://abcl.org/svn/tags/1.10.0/
contrib/asdf-jar/README.markdown.

5.3 jss

To one used to the more universal syntax of s-expr pairs upon which the definition of read and
compile time macros is quite natural !, the syntax available to the JAVA programmer may be said
to suck. To alleviate this situation, the JSS contrib introduces the SHARPSIGN-DOUBLE-QUOTE
(#") reader macro, which allows the the specification of the name of invoking function as the first
element of the relevant s-expr which tends to be more congruent to how Lisp programmers seem
to be wired to think.

While quite useful, we don’t expect that the JSS contrib will be the last experiment in wran-
gling JAVA from COMMON LISP.

1See Graham’s “On Lisp” http://lib.store.yahoo.net/lib/paulgraham /onlisp.pdf.

http://abcl.org/svn/tags/1.10.0/contrib/abcl-asdf/README.markdown
http://abcl.org/svn/tags/1.10.0/contrib/abcl-asdf/README.markdown
http://abcl.org/svn/tags/1.10.0/contrib/asdf-jar/README.markdown
http://abcl.org/svn/tags/1.10.0/contrib/asdf-jar/README.markdown

54. JFLI 93

5.3.1 JSS usage

An example of using JSS to enumerate the JAVA runtime system properties:

CL-USER> (require :abcl-contrib)
==> ("ABCL-CONTRIB")
CL-USER> (require :jss)

==> ("JSS")

CL-USER) (#"getProperties" ’java.lang.System)

==> #<java.util.Properties {java.runtime.name=Java.... {2FA21ACF}>
CL-USER) (#"propertyNames" (#"getProperties" ’java.lang.System))
==> #<java.util.Hashtable$Enumerator java.util.Has.... {36B4361A}>

Some more information on jss can be found in its documentation at http://abcl.org/svn/
tags/1.10.0/contrib/jss/README.markdown

5.4 jfli

The contrib contains a pure-Java version of JFLI, apparently a descendant of Rich Hickey’s early
experimentations with using Java from Common Lisp.
http://abcl.org/svn/tags/1.10.0/contrib/jf1i/README.

5.5 abcl-introspect

ABCL-INTROSPECT offers more extensive functionality for inspecting the state of the imple-
mentation, most notably in integration with SLIME, where the backtrace mechanism is augmented
to the point that local variables are inspectable.

A compiled function is an instance of a class, which has multiple instances if it represents a
closure, or a single instance if it represents a non-closed-over function.

The ABCL compiler stores constants that are used in function execution as private java fields.
This includes symbols used to invoke function, locally-defined functions (such as via LABEL or
flet) and string and other literal objects. ABCL-INTROSPECT implements a “do what I
mean” API for introspecting these constants.

ABCL-INTROSPECT provides access to those internal values, and uses them in at least
two ways. First, to annotate locally defined functions with the top-level function they are defined
within, and second to search for callers of a given function 2 . This may yield some false positives,
such as when a symbol that names a function is also used for some other purpose. It can also have
false negatives, as when a function is inlined. Still, it’s pretty useful. The second use to to find
source locations for frames in the debugger. If the source location for a local function is asked for
the location of its ’owner’ is instead returns.

In order to record information about local functions, ABCL defines a function-plist, which is
for the most part unused, but is used here with set of keys indicating where the local function was
defined and in what manner, i.e. as normal local function, as a method function, or as an initarg
function. There may be other places functions are stashed away (defstructs come to mind) and
this file should be added to to take them into account as they are discovered.

ABCL-INTROSPECT does not depend on JSS, but provides a bit of jss-specific functionality
if JSS *is* loaded.

5.5.1 Implementations for CL:DISASSEMBLE

The following ASDF systems packages various external tools that may be selected by the SYS: CHOOSE-DISASSEMBLER
interface:

2Since JAVA functions are strings, local fields also have these strings. In the context of looking for callers of a
function you can also give a string that names a java method. Same caveat re: false positives.

http://abcl.org/svn/tags/1.10.0/contrib/jss/README.markdown
http://abcl.org/svn/tags/1.10.0/contrib/jss/README.markdown
http://abcl.org/svn/tags/1.10.0/contrib/jfli/README

o4

6.

CHAPTER 5. CONTRIB

. objectweb

jad
javap
fernweb
cfr

procyon

To use one of these tools, first load the system via ASDF (and/or QUICKLISP), then use the
SYS:CHOOSE-DISASSEMBLER function to select the keyword that appears in SYS: *DISASSEMBLERS*

CL-
CL-
(C:

(
CL-
ABC
CL-

USER> (require :abcl-contrib) (asdf:load-system :objectweb)

USER> sys:*disassemblers*

OBJECTWEB
ABCL-INTROSPECT/JVM/TOOLS/OBJECTWEB:DISASSEMBLE-CLASS-BYTES)
SYSTEM-JAVAP . SYSTEM:DISASSEMBLE-CLASS-BYTES))

USER> (sys:choose-disassembler :objectweb)

L-INTROSPECT/JVM/TOOLS/0BJECTWEB:DISASSEMBLE-CLASS-BYTES

USER> (disassemble ’cons)

; // class wersion 52.0 (52)
; // access flags 0z30
; final class org/armedbear/lisp/Primitives$pf_cons extends org/armedbear/lisp/Prim

;2
NIL

// access flags Ozl
private final static INNERCLASS org/armedbear/lisp/Primitives$pf_cons org/armed

// access flags 0z0
<init>()V
ALOAD 0
GETSTATIC org/armedbear/lisp/Symbol.CONS : Lorg/armedbear/lisp/Symbol;
LDC "object-1 object-2"
INVOKESPECIAL org/armedbear/lisp/Primitive.<init> (Lorg/armedbear/lisp/Symbol
RETURN
MAXSTACK = 3
MAXLOCALS = 1

// access flags Ozl
public ezecute(Lorg/armedbear/lisp/LispObject;Lorg/armedbear/lisp/LispObject;)L
NEW org/armedbear/lisp/Cons
DUP
ALOAD 1
ALOAD 2
INVOKESPECIAL org/armedbear/lisp/Cons.<init> (Lorg/armedbear/lisp/LispObject;
ARETURN
MAXSTACK = 4
MAXLOCALS = 3

http://abcl.org/svn/tags/1.10.0/contrib/abcl-introspect/.

http://abcl.org/svn/tags/1.10.0/contrib/abcl-introspect/

5.6. ABCL-BUILD 95

5.6 abcl-build

ABCL-BUILD constitutes a new implementation for the original Lisp-hosted ABCL build system
API in the package ABCL-BUILD that uses the same build artifacts as all of the other current builds.

5.6.1 ABCL-BUILD Utilities

ABCL-BUILD consolidates various utilities that are useful for system construction, namely

e The ability to introspect the invocation of given executable in the current implementation
process PATH.

e Downloading and unpackaging selected JVM artifacts, namely the Ant and Maven build
tools. The ABCL-BUILD:WITH-ANT and ABCL-BUILD:WITH-MVN macros abstracts this instal-
lation procedure conveniently away from the User.

e The beginnings of a generic framework to download arbitrary archives from the network.

http://abcl.org/svn/tags/1.10.0/contrib/abcl-build/.

5.7 named-readtables

NAMED-READTABLES is a library that provides a namespace for readtables akin to the already-
existing namespace of packages.

This contrib was included from the source available from https://github.com/melisgl/
named-readtables/.

See http://abcl.org/svn/tags/1.10.0/contrib/named-readtables/ for more information.

http://abcl.org/svn/tags/1.10.0/contrib/abcl-build/
https://github.com/melisgl/named-readtables/
https://github.com/melisgl/named-readtables/
http://abcl.org/svn/tags/1.10.0/contrib/named-readtables/

o6

CHAPTER 5. CONTRIB

Chapter 6

History

ABCL was originally the extension language for the J editor, which was started in 1998 by Peter
Graves. Sometime in 2003, a whole lot of code that had previously not been released publicly was
suddenly committed that enabled ABCL to be plausibly termed an emergent ANSI Common Lisp
implementation candidate.

From 2006 to 2008, Peter manned the development lists, incorporating patches as made sense.
After a suitable search, Peter nominated Erik Hiilsmann to take over the project.

In 2008, the implementation was transferred to the current maintainers, who have striven to
improve its usability as a contemporary Common Lisp implementation.

On October 22, 2011, with the publication of this Manual explicitly stating the conformance
of Armed Bear Common Lisp to ANSI, we released abcl-1.0.0. We released abcl-1.0.1 as a main-
tenance release on January 10, 2012.

In December 2012, we revised the implementation by adding (A)MOP with the release of
abcl-1.1.0. We released abcl-1.1.1 as a maintenance release on February 14, 2013.

At the beginning of June 2013, we enhanced the stability of the implementation with the release
of abcl-1.2.1.

In March 2014, we introduced the Fourth Edition of the implementation with abcl-1.3.0. At
the end of April 2014, we released abcl-1.3.1 as a maintenance release.

In October 2016 we blessed the current SVN trunk http://abcl.org/svn/trunk/ as 1.4.0,
which includes the community contributions from Vihbu, Olof, Pipping, and Cyrus. We gin-
gerly stepped into current century by establishing GIT bridges to the source repositories available
via the URIs https://github.com/armedbear/abcl/ and https://gitlab.common-lisp.net/
abcl/abcl/ so that pull requests for enhancements to the implementation many be more easily
facilitated.

In June 2017, we released ABCL 1.5.0 which dropped support for running upon Java 5.

Against the falling canvas of 2019 we released ABCL 1.6.0 which provided compatibility with
Java 11 while skipping Java 9 and 10. In April 2020, we offered abcl-1.6.1 as a maintenance release
for usage around ELS2020.

With the overhaul the implementation of arrays specialized on (or (unsigned-byte 8) (unsigned-byte
16) (unsigned-byte 32)) to using java.nio.Buffer objects, we deemed the implementation
worthy to bless with release as abcl-1.7.0 in June 2020. We released abcl-1.7.1 as a maintenance
release in July 2020.

We released abcl-1.8.0 under the darkening storms of October 2020.

Halfway through the 7 oo v 6 n p o ¢ [Hal20], we dyslexic worker bears untied abcl-1.9.0. We
released abcl-1.9.1 as a maintenance release in February 2023. In June 2023, among other fixes,
we substantially improved our GRAY-STREAM support in abel-1.9.2.

We finally tidied up abcl-1.10.0, but in the excitement of seeing contemporary Common Lisp
alive and well, failed to make a public release until February 2026.

o7

http://abcl.org/svn/trunk/
https://github.com/armedbear/abcl/
https://gitlab.common-lisp.net/abcl/abcl/
https://gitlab.common-lisp.net/abcl/abcl/

o8

CHAPTER 6. HISTORY

Appendix A

The MOP Dictionary

99

60 APPENDIX A. THE MOP DICTIONARY

— Function: %defgeneric [mop]| function-name Erest all-keys
not-documented

— Generic Function: accessor-method-slot-definition [mop]

not-documented

— Generic Function: add-dependent [mop]

not-documented

— Generic Function: add-direct-method [mop]

not-documented

— Generic Function: add-direct-subclass [mop]

not-documented

— Function: canonicalize-direct-superclasses [mop]| direct-superclasses

not-documented

— Generic Function: class-default-initargs [mop]

not-documented

— Generic Function: class-direct-default-initargs [mop)]

not-documented

— Generic Function: class-direct-methods [mop]

not-documented

— Generic Function: class-direct-slots [mop)]

not-documented

— Generic Function: class-direct-subclasses [mop]

not-documented

— Generic Function: class-direct-superclasses [mop]

not-documented

— Function: class-documentation [mop]

not-documented

— Generic Function: class-finalized-p [mop]

not-documented

— Generic Function: class-precedence-list [mop]

not-documented

— Generic Function: class-prototype [mop]

not-documented

— Generic Function: class-slots [mop]

not-documented

— Generic Function: compute-applicable-methods [common-lisp]

not-documented

— Generic Function: compute-applicable-methods-using-classes [mop]

not-documented

— Generic Function: compute-class-precedence-list [mop]

not-documented

— Generic Function: compute-default-initargs [mop]

not-documented

— Generic Function: compute-discriminating-function [mop]

not-documented

— Generic Function: compute-effective-method [mop]

not-documented

— Generic Function: compute-effective-slot-definition [mop]

not-documented

— Generic Function: compute-slots [mop]

not-documented

— Class: direct-slot-definition [mop]

not-documented

— Generic Function: direct-slot-definition-class [mop]

not-documented

— Class: effective-slot-definition [mop]

not-documented

— Generic Function: effective-slot-definition-class [mop]

not-documented

— Function: ensure-class [mop] name &rest all-keys Ekey Eallow-other-keys

not-documented

— Generic Function: ensure-class-using-class [mop)]

not-documented

— Generic Function: ensure-generic-function-using-class [mop]

not-documented

61

62 APPENDIX A. THE MOP DICTIONARY

— Class: eql-specializer [mop)]

not-documented

— Function: eql-specializer-object [mop] eqgl-specializer

not-documented

— Function: extract-lambda-list [mop] specialized-lambda-list

not-documented

— Function: extract-specializer-names [mop| specialized-lambda-list

not-documented

— Generic Function: finalize-inheritance [mop)]

not-documented

— Generic Function: find-method-combination [mop)]

not-documented

— Class: forward-referenced-class [system]

not-documented

— Class: funcallable-standard-class [mop]

not-documented

— Function: funcallable-standard-instance-access [mop] instance location

not-documented

— Class: funcallable-standard-object [mop]

not-documented

— Generic Function: generic-function-argument-precedence-order [mop]

not-documented

— Generic Function: generic-function-declarations [mop]

not-documented

— Generic Function: generic-function-lambda-list [mop]

not-documented

— Generic Function: generic-function-method-class [mop]

not-documented

— Generic Function: generic-function-method-combination [mop]

not-documented

— Generic Function: generic-function-methods [mop)]

not-documented

— Generic Function: generic-function-name [mop]

not-documented

— Function: intern-eql-specializer [mop] object

not-documented

— Generic Function: make-method-lambda [mop]

not-documented

— Generic Function: map-dependents [mop]

not-documented

— Class: metaobject [mop)]

not-documented

— Generic Function: method-function [mop]

not-documented

— Generic Function: method-generic-function [mop]

not-documented

— Generic Function: method-lambda-list [mop]

not-documented

— Generic Function: method-qualifiers [common-lisp]

not-documented

— Generic Function: method-specializers [mop]

not-documented

— Generic Function: reader-method-class [mop]

not-documented

— Generic Function: remove-dependent [mop)]

not-documented

— Generic Function: remove-direct-method [mop]

not-documented

— Generic Function: remove-direct-subclass [mop]

not-documented

— Function: set-funcallable-instance-function [mop] funcallable-instance function

not-documented

— Generic Function: slot-boundp-using-class [mop]

not-documented

63

64 APPENDIX A. THE MOP DICTIONARY

— Class: slot-definition [system]

not-documented

— Generic Function: slot-definition-allocation [mop]

not-documented

— Generic Function: slot-definition-documentation [mop]

not-documented

— Generic Function: slot-definition-initargs [mop)]

not-documented

— Generic Function: slot-definition-initform [mop]

not-documented

— Generic Function: slot-definition-initfunction [mop]

not-documented

— Generic Function: slot-definition-location [mop]

not-documented

— Generic Function: slot-definition-name [mop]

not-documented

— Generic Function: slot-definition-readers [mop]

not-documented

— Generic Function: slot-definition-type [mop)]

not-documented

— Generic Function: slot-definition-writers [mop)]

not-documented

— Generic Function: slot-makunbound-using-class [mop]

not-documented

— Generic Function: slot-value-using-class [mop]

not-documented

— Class: specializer [mop]

not-documented

— Generic Function: specializer-direct-generic-functions [mop]

not-documented

— Generic Function: specializer-direct-methods [mop]

not-documented

— Class: standard-accessor-method [mop)]
not-documented

— Class: standard-direct-slot-definition [mop]
not-documented

— Class: standard-effective-slot-definition [mop]
not-documented

— Function: standard-instance-access [system)] instance location
not-documented

— Class: standard-method [common-lisp]
not-documented

— Class: standard-reader-method [mop]
not-documented

— Class: standard-slot-definition [mop]
not-documented

— Class: standard-writer-method [mop]
not-documented

— Generic Function: update-dependent [mop)]
not-documented

— Generic Function: validate-superclass [mop]

This generic function is called to determine whether the class superclass is
suitable for use as a superclass of class.

— Generic Function: writer-method-class [mop]
not-documented

65

66

APPENDIX A. THE MOP DICTIONARY

Appendix B

The SYSTEM Dictionary

The public interfaces in this package are subject to change with ABCL 2.0

67

68 APPENDIX B. THE SYSTEM DICTIONARY

— Function: %allocate-funcallable-instance [system] class

not-documented

— Function: %class-default-initargs [system]

not-documented

— Function: %class-direct-default-initargs [system]

not-documented

— Function: %class-direct-methods [system]

not-documented

— Function: %class-direct-slots [system|]

not-documented

— Function: %class-direct-subclasses [system]

not-documented

— Function: %class-direct-superclasses [system]

not-documented

— Function: %class-finalized-p [system]

not-documented

— Function: %class-layout [system] class

not-documented

— Function: %class-name [system] class

not-documented

— Function: %class-precedence-list [system]

not-documented

— Function: %class-slots [system] class

not-documented

— Function: %defun [system] name definition

not-documented

— Function: %documentation [system] object doc-type

not-documented

— Function: %float-bits [system] integer

not-documented

— Function: %in-package [system]

not-documented

— Function: %make-condition [system]

not-documented

— Function: %make-emf-cache [system]

not-documented

— Function: %make-instances-obsolete [system] class

not-documented

— Function: %make-integer-type [system] low high
not-documented

— Function: %make-list [system)]

not-documented

— Function: %make-logical-pathname [system] namestring

not-documented

— Function: %make-slot-definition [system)] slot-class

Argument must be a subclass of standard-slot-definition

— Function: %make-structure [system] name slot-values

not-documented

— Function: %member [system]

not-documented

— Function: %nstring-capitalize [system)]

not-documented

— Function: %nstring-downcase [system)]

not-documented

— Function: %nstring-upcase [system]

not-documented

— Function: %output-object [system] object stream

not-documented

— Function: %putf [system)] plist indicator new-value

not-documented

— Function: %reinit-emf-cache [system] generic-function eql-specilizer-objects-list

not-documented

— Function: %set-class-default-initargs [system]

not-documented

69

70 APPENDIX B. THE SYSTEM DICTIONARY

— Function: %set-class-direct-default-initargs [system]

not-documented

— Function: %set-class-direct-methods [system]

not-documented

— Function: %set-class-direct-slots [system]

not-documented

— Function: %set-class-direct-subclasses [system)] class direct-subclasses

not-documented

— Function: %set-class-direct-superclasses [system]

not-documented

— Function: %set-class-documentation [system)]

not-documented

— Function: %set-class-finalized-p [system)]

not-documented

— Function: %set-class-layout [system] class layout
not-documented

— Function: %set-class-name [system]

not-documented

— Function: %set-class-precedence-list [system]

not-documented

— Function: %set-class-slots [system] class slot-definitions

not-documented

— Function: %set-documentation [system| object doc-type documentation

not-documented

— Function: %set-fill-pointer [system]

not-documented

— Function: %set-find-class [system|]

not-documented

— Function: %set-standard-instance-access [system)] instance location new-value

not-documented

— Function: %set-std-instance-layout [system]

not-documented

— Function: %std-allocate-instance [system] class

not-documented

— Function: %stream-output-object [system|]

not-documented

— Function: %stream-terpri [system] output-stream

not-documented

— Function: %stream-write-char [system] character output-stream

not-documented

— Function: %string-capitalize [system]

not-documented

— Function: %string-downcase [system]

not-documented

— Function: %string-equal [system)]

not-documented

— Function: %string-greaterp [system]
not-documented

— Function: %string-lessp [system|]

not-documented

— Function: %string-not-equal [system]

not-documented

— Function: %string-not-greaterp [system)]

not-documented

— Function: %string-not-lessp [system]

not-documented

— Function: %string-upcase [system]

not-documented

— Function: %string/= [system]

not-documented

— Function: %string; [system]

not-documented

— Function: %stringj= [system]

not-documented

71

72 APPENDIX B. THE SYSTEM DICTIONARY

— Function: %string; [system]
not-documented

— Function: %string;= [system)]
not-documented

— Function: %type-error [system] datum expected-type
not-documented

— Function: %wild-pathname-p [system] pathname keyword

Predicate for determing whether PATHNAME contains wild components.
KEYWORD, if non-nil, should be one of :directory, :host, :device, :name,
:type, or :version indicating that only the specified component should be
checked for wildness.

— Variable: *abcl-contrib* [system|]

Pathname of the abcl-contrib artifact.
Initialized via SYSTEM:FIND-CONTRIB.

— Variable: *compile-file-class-extension® [system]
not-documented

— Variable: *compile-file-environment® [system]
not-documented

— Variable: *compile-file-type* [system]
not-documented

— Variable: *compile-file-zip* [system)]
not-documented

— Variable: *compiler-diagnostic* [system]

The stream to emit compiler diagnostic messages to, or nil to muffle output.

— Variable: *compiler-error-context® [system|]

not-documented

— Variable: *current-print-length* [system]

not-documented

— Variable: *current-print-level* [system]

not-documented

— Variable: *debug* [system]
not-documented

— Variable: *debugging-locals-p* [abcl-introspect/system)|

Whether SYS:FIND-LOCALS should be looking for local variables

73

— Variable: *disassemblers* [system]

Methods of invoking CL:DISASSEMBLE consisting of a list of (KEY-
WORD FUNCTION) pairs

The pairs (KEYWORD FUNCTION) contain a KEYWORD uniquely
identifying a particular disassembler and a SYMBOL designating its invo-
cation function.

The KEYWORD values are used by SYS:CHOOSE-DISASSEMBLER
to install a given disassembler as the one used by CL:DISASSEMBLE. Ad-
ditional disassemblers/decompilers are packaged in the ABCL-INTROSPECT
contrib.

The initial default is :SYSTEM-JAVAP which attempts to invoke the
javap command line tool shipped as part of the Java Developement Kit
which may or may not be installed locally.

— Variable: *enable-autocompile* [system)]
not-documented

— Variable: *explain* [system]

not-documented

— Variable: *fasl-loader* [system]

not-documented

— Variable: *fasl-version* [system|]
not-documented

— Variable: *inline-declarations* [system]

not-documented

— Variable: *logical-pathname-translations* [system]
not-documented

— Variable: *noinform* [system]
not-documented

— Variable: *safety* [system]

not-documented

— Variable: *source* [system]

not-documented

— Variable: *source-position* [system)]
not-documented

— Variable: *space* [system|]

not-documented

— Variable: *speed* [system]

not-documented

74 APPENDIX B. THE SYSTEM DICTIONARY

— Variable: *traced-names™® [system]

not-documented

— Variable: 4cl-package+ [system]
not-documented

— Variable: +false-type+ [system)]
not-documented

— Variable: +fixnum-type+ [system]
not-documented

— Variable: +integer-type+ [system)]
not-documented

— Variable: +keyword-package+ [system|]
not-documented

— Variable: +slot-unbound+ [system]
not-documented

— Variable: +true-type+ [system]
not-documented

— Function: aset [system] array subscripts new-element
not-documented

— Function: autocompile [system)] function
not-documented

— Function: available-encodings [system|]

Returns all charset encodings suitable for passing to a stream constructor
available at runtime.

— Macro: aver [system]
Signal simple-error when EXPR is non-NIL.

— Function: backtrace [system)]

Returns a Java backtrace of the invoking thread.

— Function: built-in-function-p [system]
not-documented

— Function: cache-emf [system)] generic-function args emf
not-documented

— Function: call-count [system)]
not-documented

75

— Variable: call-registers-limit [system]

not-documented

— Function: canonicalize-logical-host [system] host

not-documented

— Function: check-declaration-type [system| name

not-documented

— Function: check-sequence-bounds [system]| sequence start end

not-documented

— Function: choose-disassembler [system] &optional name

Report current disassembler that would be used by CL:DISASSEMBLE
When the optional keyword NAME is specified, select the associated dis-
assembler from SYS:*DISASSEMBLERS* for future invocations of CL:DISASSEMBLE.

— Function: class-bytes [system] class

not-documented

— Function: clear-zip-cache [system)]

not-documented

— Function: coerce-to-condition [system| datum arguments default-type fun-name

not-documented

— Function: coerce-to-function [system]

not-documented

— Function: compile-file-if-needed [system)] input-file érest allargs Ekey force-compile Eallow-
other-keys

not-documented

— Function: compile-system [extensions] &key quit (zip t) (cls-ext *compile-file-class-extension™®)
(abcl-ext *compile-file-type*) output-path

not-documented

— Function: compiled-lisp-function-p [system] object

not-documented

— Class: compiler-bytecode-length-error [system]

not-documented

— Function: compiler-defstruct [system] name Ekey conc-name default-constructor con-
structors copier include type named initial-offset predicate print-function print-object direct-slots
slots inherited-accessors documentation

not-documented

76 APPENDIX B. THE SYSTEM DICTIONARY

— Function: compiler-error [system)] format-control €rest format-arguments

not-documented

— Function: compiler-macroexpand [system] form &optional env

not-documented

— Function: compiler-style-warn [system] format-control &rest format-arguments

not-documented

— Function: compiler-subtypep [system] compiler-type typespec
not-documented

— Function: compiler-unsupported [system] format-control €rest format-arguments

not-documented

— Function: compiler-warn [system] format-control &rest format-arguments

not-documented

— Function: concatenate-fasls [system] inputs output

not-documented

— Macro: defconst [system|]

not-documented

— Macro: define-source-transform [system]

not-documented

— Macro: defknown [system|]

not-documented

— Function: delete-eq [system] item sequence

not-documented

— Function: delete-eql [system] item sequence

not-documented

— Function: describe-compiler-policy [system|]

not-documented

— Function: disable-zip-cache [system)]

Not currently implemented

— Function: disassemble-class-bytes [system] java-object

not-documented

— Function: double-float-high-bits [system] float

not-documented

7

— Function: double-float-low-bits [system] float

not-documented

— Function: dump-form [system)| form stream

not-documented

— Function: dump-uninterned-symbol-index [system] symbol

not-documented

— Function: empty-environment-p [system] environment

not-documented

— Class: environment [system]

not-documented

— Function: environment-add-function-definition [system] environment name lambda-
exTpression

not-documented

— Function: environment-add-macro-definition [system] environment name expander

not-documented

— Function: environment-add-symbol-binding [system)] environment symbol value

not-documented

— Function: environment-all-functions [system]| environment

not-documented

— Function: environment-all-variables [system] environment

not-documented

— Function: environment-variables [system| environment

not-documented

— Function: expand-inline [system)] form ezpansion

not-documented

— Function: expand-source-transform [system] form

not-documented

— Function: fdefinition-block-name [system] function-name

not-documented

— Function: find-contrib [system]

Introspect runtime classpaths to return a pathname containing subdirecto-
ries containing ASDF definitions.

78 APPENDIX B. THE SYSTEM DICTIONARY

— Function: find-locals [abcl-introspect/system] index backtrace

Return local variable bindings at INDEX in BACKTRACE
Added by ABCL-INTROSPECT.

— Function: find-system [system]

Find the location of the Armed Bear system implementation
Used to determine relative pathname to find ’abcl-contrib.jar’.

— Function: fixnum-constant-value [system] compiler-type
not-documented

— Function: fixnum-type-p [system] compiler-type
not-documented

— Function: float-infinity-p [system]
not-documented

— Function: float-nan-p [system]
not-documented

— Function: float-overflow-mode [system] &optional boolean
not-documented

— Function: float-string [system]
not-documented

— Function: float-underflow-mode [system] &optional boolean
not-documented

— Class: forward-referenced-class [system]
not-documented

— Function: frame-to-list [system] frame
not-documented

— Function: frame-to-string [system]| frame
Convert stack FRAME to a (potentially) readable string.

— Function: fset [system] name function &optional source-position arglist documentation
not-documented

— Function: ftype-result-type [system] ftype
not-documented

— Function: function-plist [system] function
not-documented

— Function: function-result-type [system] name
not-documented

— Function: get-cached-emf [system)| generic-function args

not-documented

— Function: get-function-info-value [system] name indicator

not-documented

— Function: get-input-stream [system)| pathname
Returns a java.io.InputStream for resource denoted by PATHNAME.

— Function: gethashl [system] key hash-table

not-documented

— Function: grovel-java-definitions-in-file [system)] file out

not-documented

— Function: hash-table-weakness [system]| hash-table
Return weakness property of HASH-TABLE, or NIL if it has none.

— Function: hot-count [system]

not-documented

— Function: identity-hash-code [system]

not-documented

— Function: init-fasl [system]| &key version

not-documented

— Function: inline-expansion [system]| name

not-documented

— Function: inline-p [system]| name

not-documented

— Function: inspected-parts [system)]

not-documented

— Function: integer-constant-value [system] compiler-type

not-documented

— Function: integer-type-high [system]

not-documented

— Function: integer-type-low [system]

not-documented

— Function: integer-type-p [system] object

not-documented

79

80 APPENDIX B. THE SYSTEM DICTIONARY

— Function: interactive-eval [system)]
not-documented

— Function: internal-compiler-error [system]| format-control Erest format-arguments
not-documented

— Class: jar-stream [system]
not-documented

— Function: java-long-type-p [system] compiler-type
not-documented

— Function: java.class.path [system)]

Return a list of the directories as pathnames referenced in the JVM class-
path.

— Function: lambda-name [system]
not-documented

— Function: layout-class [system)] layout
not-documented

— Function: layout-length [system] layout
not-documented

— Function: layout-slot-index [system]

not-documented

— Function: layout-slot-location [system]| layout slot-name
not-documented

— Function: list-delete-eq [system] item list
not-documented

— Function: list-delete-eql [system)] item list
not-documented

— Function: list-directory [system] directory éoptional (resolve-symlinks nil)
Lists the contents of DIRECTORY, optionally resolving symbolic links.

— Function: load-compiled-function [system] source
not-documented

— Function: load-system-file [system)]
not-documented

— Function: logical-host-p [system] canonical-host
not-documented

81

— Function: logical-pathname-p [system] object

Returns true if OBJECT is of type logical-pathname; otherwise, returns
false.

— Function: lookup-known-symbol [system]| symbol

Returns the name of the field and its class designator which stores the Java
object ‘symbol’.

— Function: macro-function-p [system] value

not-documented

— Function: make-closure [system]

not-documented

— Function: make-compiler-type [system] typespec

not-documented

— Function: make-double-float [system]| bits

not-documented

— Function: make-environment [system] &optional parent-environment

not-documented

— Function: make-file-stream [system] pathname element-type direction if-exists external-
format

not-documented

— Function: make-fill-pointer-output-stream [system]
not-documented

— Function: make-integer-type [system)] type

not-documented

— Function: make-keyword [system] symbol

not-documented

— Function: make-layout [system]| class instance-slots class-slots

not-documented

— Function: make-macro [system] name expansion-function

not-documented

— Function: make-macro-expander [system] definition

not-documented

— Function: make-single-float [system] bits

not-documented

82 APPENDIX B. THE SYSTEM DICTIONARY

— Function: make-structure [system]

not-documented

— Function: make-symbol-macro [system]| expansion

not-documented

— Function: match-wild-jar-pathname [system] wild-jar-pathname

not-documented

— Macro: named-lambda [system)]

not-documented

— Function: normalize-type [system] type

not-documented

— Function: note-name-defined [system] name

not-documented

— Function: notinline-p [system]| name

not-documented

— Function: out-synonyme-of [system]| stream-designator

not-documented

— Function: output-object [system] object stream
not-documented

— Function: package-external-symbols [system|]

not-documented

— Function: package-inherited-symbols [system]

not-documented

— Function: package-internal-symbols [system]

not-documented

— Function: package-symbols [system|]

not-documented

— Function: parse-body [system] body E&optional (doc-string-allowed t)

not-documented

— Function: precompile [extensions] name &optional definition

not-documented

— Function: process-alive-p [system)] process

not-documented

— Function: process-error [system)] process

not-documented

— Function: process-exit-code [system] instance

The exit code of a process.

— Function: process-input [system)| process

not-documented

— Function: process-kill [system] process

Kills the process.

— Function: process-optimization-declarations [system] forms

not-documented

— Function: process-output [system)] process

not-documented

— Function: process-p [system] object
not-documented

— Function: process-pid [system] process

Return the process 1D.

— Function: process-wait [system] process

Wait for process to quit running for some reason.

— Function: proclaimed-ftype [system] name

not-documented

— Function: proclaimed-type [system] name

not-documented

— Function: psxhash [system] object

not-documented

— Function: put [system|]

not-documented

— Function: puthash [system] key hash-table new-value &optional default

not-documented

— Function: read-8-bits [system]| stream Eoptional eof-error-p eof-value

not-documented

— Function: read-vector-unsigned-byte-8 [system)] vector stream start end

not-documented

83

84 APPENDIX B. THE SYSTEM DICTIONARY

— Function: record-source-information [system] name &optional source-pathname source-
position

not-documented

— Function: record-source-information-for-type [system] name type &optional source-
pathname source-position

Record source information on the SYS:SOURCE property for symbol with
NAME

TYPE is either a symbol or list.

Source information for functions, methods, and generic functions are
represented as lists of the following form:

(:generic-function function-name) (:function function-name) (:method
method-name qualifiers specializers)

Where FUNCTION-NAME or METHOD-NAME can be a either be of
the form ’symbol or ’(setf symbol).

Source information for all other forms have a symbol for TYPE which
is one of the following;:

:class, :variable, :condition, :constant, :compiler-macro, :macro :pack-
age, :structure, :type, :setf-expander, :source-transform

These values follow SBCL’S implemenation in SLIME c.f. jhttps://github.com/slime/slime/blob/bad2acf6

— Function: remember [system)|

not-documented

— Function: remove-zip-cache-entry [system| pathname

not-documented

— Function: require-type [system)] arg type

not-documented

— Function: run-program [system)| program args €key environment (wait t) clear-environment
(input stream) (output stream) (error stream) if-input-does-not-exist (if-output-exists error) (if-
error-exists error) directory

Run PROGRAM with ARGS in with ENVIRONMENT variables.

Possibly WAIT for subprocess to exit.

Optionally CLEAR-ENVIRONMENT of the subprocess of any non
specified values.

Creates a new process running the the PROGRAM.

ARGS are a list of strings to be passed to the program as arguments.

For no arguments, use nil which means that just the name of the pro-
gram is passed as arg 0.

Returns a process structure containing the JAVA-OBJECT wrapped
Process object, and the PROCESS-INPUT, PROCESS-OUTPUT, and PROCESS-
ERROR streams.

c.f. http://download.oracle.com/javase/6/docs/api/java/lang/Process.html

Notes about Unix environments (as in the :environment):

* The ABCL implementation of run-program, like SBCL, Perl and many
other programs, copies the Unix environment by default.

* Running Unix programs from a setuid process, or in any other situ-
ation where the Unix environment is under the control of someone else, is
a mother lode of security problems. If you are contemplating doing this,

read about it first. (The Perl community has a lot of good documentation
about this and other security issues in script-like programs.

The &key arguments have the following meanings:

:environment An alist of STRINGs (name . value) describing new en-
vironment values that replace existing ones.

:clear-environment If non-NIL, the current environment is cleared before
the values supplied by :environment are inserted.

:wait If non-NIL, which is the default, wait until the created process
finishes. If NIL, continue running Lisp until the program finishes.

:dinput If T, I/O is inherited from the Java process. If NIL, /dev/null is
used (nul on Windows). If a PATHNAME designator other than a stream is
supplied, input will be read from that file. If set to :STREAM, a stream will
be available via PROCESS-INPUT to read from. Defaults to :STREAM.

:if-input-does-not-exist If :input points to a non-existing file, this may
be set to :ERROR in order to signal an error, :CREATE to create and
read from an empty file, or NIL to immediately NIL instead of creating the
process. Defaults to NIL.

:output If T, I/0 is inherited from the Java process. If NIL, /dev/null is
used (nul on Windows). If a PATHNAME designator other than a stream
is supplied, output will be redirect to that file. If set to :STREAM, a
stream will be available via PROCESS-OUTPUT to write to. Defaults to
:STREAM.

:if-output-exists If :output points to a non-existing file, this may be set
to :ERROR in order to signal an error, :SUPERSEDE to supersede the
existing file, :APPEND to append to it instead, or NIL to immediately
NIL instead of creating the process. Defaults to :ERROR.

:error Same as :output, but can also be :output, in which case the error
stream is redirected to wherever the standard output stream goes. Defaults
to :STREAM.

‘if-error-exists Same as :if-output-exists, but for the :error target.

:directory If set will become the working directory for the new process,
otherwise the working directory will be unchanged from the current Java
process. Defaults to NIL.

— Function: set-call-count [system)]

not-documented

— Function: set-car [system)]

not-documented

— Function: set-cdr [system]

not-documented

— Function: set-char [system] string index character

not-documented

— Function: set-function-info-value [system] name indicator value

not-documented

— Function: set-hot-count [system]

not-documented

86 APPENDIX B. THE SYSTEM DICTIONARY

— Function: set-schar [system)] string index character

not-documented

— Function: set-std-slot-value [system] instance slot-name new-value

not-documented

— Function: setf-function-name-p [system)] thing

not-documented

— Function: sha256 [system] érest paths-or-strings

not-documented

— Function: shrink-vector [system)] vector new-size

not-documented

— Function: simple-format [system)] destination control-string Erest format-arguments

not-documented

— Function: simple-search [system)] sequencel sequence2

not-documented

— Function: simple-typep [system]

not-documented

— Function: single-float-bits [system)] float

not-documented

— Class: slot-definition [system]

not-documented

— Function: source-transform [system] name

not-documented

— Function: standard-instance-access [system)] instance location

not-documented

— Function: standard-object-p [system] object

not-documented

— Function: std-instance-class [system)]

not-documented

— Function: std-instance-layout [system]

not-documented

— Function: std-slot-boundp [system] instance slot-name

not-documented

— Function: std-slot-value [system] instance slot-name

not-documented

— Function: structure-length [system] instance

not-documented

— Function: structure-object-p [system] object

not-documented

— Function: structure-ref [system)] instance index

not-documented

— Function: structure-set [system)| instance index new-value

not-documented

— Function: subclassp [system] class

not-documented

— Function: svset [system] simple-vector index new-value

not-documented

— Function: swap-slots [system] instance-1 instance-2

not-documented

— Function: symbol-macro-p [system] value

not-documented

— Function: system-artifacts-are-jars-p [system]

not-documented

— Function: undefined-function-called [system] name arguments

not-documented

— Function: untraced-function [system]| name

not-documented

— Function: unzip [system)] pathname Eoptional directory =; unzipped_pathnames

not-documented

— Class: url-stream [system|]

not-documented

— Function: vector-delete-eq [system] item vector

not-documented

— Function: vector-delete-eql [system]| item vector

not-documented

87

88 APPENDIX B. THE SYSTEM DICTIONARY

— Function: whitespacep [system)]
not-documented

— Function: write-8-bits [system]| byte stream
not-documented

— Function: write-vector-unsigned-byte-8 [system]| vector stream start end

not-documented

— Function: zip [system] pathname pathnames Eoptional topdir
Creates a zip archive at PATHNAME whose entries enumerated via the
list of PATHNAMES. If the optional TOPDIR argument is specified, the
archive will preserve the hierarchy of PATHNAMES relative to TOPDIR.
Without TOPDIR, there will be no sub-directories in the archive, i.e. it
will be flat.

Appendix C

The JSS Dictionary

These public interfaces are provided by the JSS contrib.

89

90 APPENDIX C. THE JSS DICTIONARY

— Variable: *cl-user-compatibility™ [jss]
Whether backwards compatibility with JSS’s use of CL-USER has been
enabled.

— Variable: *do-auto-imports* [jss]

Whether to automatically introspect all Java classes on the classpath when
JSS is loaded.

— Variable: *muffle-warnings* [jss]
Attempt to make JSS less chatting about how things are going.

— Function: classfiles-import [jss| directory

Load all Java classes recursively contained under DIRECTORY in the cur-
rent process.

— Function: ensure-compatibility [jss]
Ensure backwards compatibility with JSS’s use of CL-USER.

— Function: find-java-class [jss] name
not-documented

— Function: get-java-field [jss] object field Eoptional (try-harder *running-in-0sgi*)
Get the value of the FIELD contained in OBJECT. If OBJECT is a symbol
it names a dot qualified static FIELD.

— Function: hashmap-to-hashtable [jss] hashmap Erest rest Ekey (keyfun (function iden-
tity)) (valfun (function identity)) (invert? NIL) table &allow-other-keys
Converts the a HASHMAP reference to a java.util. HashMap object to a
Lisp hashtable.
The REST paramter specifies arguments to the underlying MAKE-
HASH-TABLE call.
KEYFUN and VALFUN specifies functions to be run on the keys and
values of the HASHMAP right before they are placed in the hashtable.
If INVERT? is non-nil than reverse the keys and values in the resulting
hashtable.

— Macro: invoke-add-imports [jss]
Push these imports onto the search path. If multiple, earlier in list take
precedence

— Function: invoke-restargs [jss] method object args Eoptional (raw? NIL)
not-documented

— Function: iterable-to-list [jss] iterable
Return the items contained the java.lang.Iterable ITERABLE as a list.

— Function: j2list [jss| thing
Attempt to construct a Lisp list out of a Java THING.
THING may be a wide range of Java collection types, their common
iterators or a Java array.

— Function: japropos [jss] string

Output the names of all Java class names loaded in the current process
which match STRING..

— Function: jar-import [jss| file
Import all the Java classes contained in the pathname FILE into the JSS
dynamic lookup cache.

— Function: jarray-to-list [jss] jarray
Convert the Java array named by JARRARY into a Lisp list.

— Function: java-class-method-names [jss] class &optional stream

Return a list of the public methods encapsulated by the JVM CLASS.

If STREAM non-nil, output a verbose description to the named output
stream.

CLASS may either be a string naming a fully qualified JVM class in
dot notation, or a symbol resolved against all class entries in the current
classpath.

— Function: jclass-all-interfaces [jss] class

Return a list of interfaces the class implements

— Function: jemn [jss] class &optional stream

Return a list of the public methods encapsulated by the JVM CLASS.

If STREAM non-nil, output a verbose description to the named output
stream.

CLASS may either be a string naming a fully qualified JVM class in
dot notation, or a symbol resolved against all class entries in the current
classpath.

— Function: jlist-to-list [jss] list
Convert a LIST implementing java.util.List to a Lisp list.

— Function: jmap [jss] function thing

Call FUNCTION for every element in the THING. Returns NIL.

THING may be a wide range of Java collection types, their common
iterators or a Java array.

In case the THING is a map-like object, FUNCTION will be called with
two arguments, key and value.

— Macro: jtypecase [jss]

JTYPECASE Keyform (Type Form*)* Evaluates the Forms in the first
clause for which Type names a class that Keyform isInstance of is true.

— Function: jtypep [jss] object type
not-documented

— Function: list-to-list [jss] list

not-documented

91

92 APPENDIX C. THE JSS DICTIONARY

— Function: new [jss] class-name &rest args
Invoke the Java constructor for CLASS-NAME with ARGS.
CLASS-NAME may either be a symbol or a string according to the
usual JSS conventions.

— Function: set-java-field [jss] object field value &optional (try-harder *running-in-osgi*)
Set the FIELD of OBJECT to VALUE. If OBJECT is a symbol, it names
a dot qualified Java class to look for a static FIELD. If OBJECT is an
instance of java:java-object, the associated is used to look up the static
FIELD.

— Function: set-to-list [jss] set
Convert the java.util.Set named in SET to a Lisp list.

— Function: to-hashset [jss] list
Convert LIST to the java.util. HashSet contract

— Function: vector-to-list [jss] vector
Return the elements of java.lang.Vector VECTOR as a list.

— Macro: with-constant-signature [jss]
Expand all references to FNAME-JNAME-PAIRS in BODY into static
function calls promising that the same function bound in the FNAME-
JNAME-PAIRS will be invoked with the same argument signature.
FNAME-JNAME-PAIRS is a list of (symbol function &optional raw)
elements where symbol will be the symbol bound to the method named by
the string function. If the optional parameter raw is non-nil, the result will
be the raw JVM object, uncoerced by the usual conventions.
Use this macro if you are making a lot of calls and want to avoid the
overhead of the dynamic dispatch.

Bibliography

[Bea]
[BLFMOS5]

[Cosl1]

[Evell]

[Gro06]

[Gro22]
[Hal20]

[Lea9s]

[Mas00]
[Mic05]
[NROS]
[PT96]
[RBRK]

[Rho09]

[sli]

Zach Beane. Quicklisp. http://www.quicklisp.org/. Last accessed Jan 25, 2012.

Tim Berners-Lee, Roy Fielding, and Larry Masinter. Rfc 3986: Uri generic syntax.
http://www.ietf.org/rfc/rfc3986.txt, 2005. Last accessed Feb 5, 2012.

Costanza.Pascal. Closer to mop is a compatibility layer that rectifies many of the absent
or incorrect clos mop features across a broad range of common lisp implementations.
https://github.com/pcostanza/closer-mop, 2011. Last accessed Oct 2, 2016.

Mark Evenson. Unpublished draft of An Implementation and Analysis of Adding IRI
to Common Lisp’s Pathname. https://github.com/easye/abcl/blob/master/doc/
design/pathnames/url-pathnames.mark, 2011. Last accessed Oct 2, 2016.

Mike Grogan. Scripting for the Java platform. Final Draft Specification JSR-223, Sun
Microsystems, Inc., 2006. http://jcp.org/aboutJava/communityprocess/final/
jsr223/index.html.

The Adoptium Working Group. Freely redistributable adoptium openjdk releases.
https://adoptium.net/, 2022. Last accessed April 29, 2022.

Harry Halprin. mavdnuo(. https://agorist.xyz/files/Agorism_XXI_I_2022.pdf,
2020. Last accessed April 29, 2022.

Doug Lea. Overview of package util.concurrent release 1.3.4. http://gee.cs.oswego.
edu/dl/classes/EDU/oswego/cs/d1l/util/concurrent/intro.html, 1998. Last ac-
cessed Oct 2, 2016.

Brian Maso. A new era for Java protocol handlers. http://docslide.us/documents/
java-protocol-handler.html, August 2000. Last accessed Oct 2, 2016.

Sun Microsystems. Nio. https://docs.oracle.com/javase/8/docs/api/java/nio/
package-summary.html, 2005. Last accessed April 30, 2022.

Jim Newton and Christophe Rhodes. Custom Specializers in Object-Oriented Lisp.
2008.

Kent Pitman et al. Common Lisp HyperSpec. http://www.lispworks.com/
documentation/HyperSpec/Front/index.htm, 1996. Last accessed Feb 4, 2012.

Frangois-René Rideau, Daniel Barlow, Christopher Rhodes, and Garry King. Asdf.
http://common-lisp.net/project/asdf/. Last accessed Feb 5, 2012.

Christophe Rhodes. User-extensible sequences in Common Lisp. In Proceedings of the
2007 International Lisp Conference, pages 13:1-13:14. ACM, 2009. Also freely available
at http://doc.gold.ac.uk/~masOlcr/papers/ilc2007/sequences-20070301.pdf.

SLIME: The Superior Lisp Interaction Mode for Emacs. http://common-lisp.net/
project/slime/. Last accessed Feb 4, 2012.

93

http://www.quicklisp.org/
http://www.ietf.org/rfc/rfc3986.txt
https://github.com/pcostanza/closer-mop
https://github.com/easye/abcl/blob/master/doc/design/pathnames/url-pathnames.mark
https://github.com/easye/abcl/blob/master/doc/design/pathnames/url-pathnames.mark
http://jcp.org/aboutJava/communityprocess/final/jsr223/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr223/index.html
https://adoptium.net/
https://agorist.xyz/files/Agorism_XXI_I_2022.pdf
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html
http://docslide.us/documents/java-protocol-handler.html
http://docslide.us/documents/java-protocol-handler.html
https://docs.oracle.com/javase/8/docs/api/java/nio/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/nio/package-summary.html
http://www.lispworks.com/documentation/HyperSpec/Front/index.htm
http://www.lispworks.com/documentation/HyperSpec/Front/index.htm
http://common-lisp.net/project/asdf/
http://doc.gold.ac.uk/~mas01cr/papers/ilc2007/sequences-20070301.pdf
http://common-lisp.net/project/slime/
http://common-lisp.net/project/slime/

Index

ABCL-CONTRIB, 72
AUTOLOAD-VERBOSE, 34
BATCH-MODE, 34
CL-USER-COMPATIBILITY, 90
COMMAND-LINE-ARGUMENT-LIST, 34
COMPILE-FILE-CLASS-EXTENSION, 72
COMPILE-FILE-ENVIRONMENT, 72
COMPILE-FILE-TYPE, 72
COMPILE-FILE-ZIP, 72
COMPILER-DIAGNOSTIC, 72
COMPILER-ERROR-CONTEXT, 72
CURRENT-PRINT-LENGTH, 72
CURRENT-PRINT-LEVEL, 72
DEBUG, 72

DEBUG-CONDITION, 34
DEBUG-LEVEL, 34
DEBUGGING-LOCALS-P, 72
DISASSEMBLER, 34
DISASSEMBLERS, 73
DO-AUTO-IMPORTS, 90
ED-FUNCTIONS, 34
ENABLE-AUTOCOMPILE, 73
ENABLE-INLINE-EXPANSION, 34
EXPLAIN, 73

FASL-LOADER, 73
FASL-VERSION, 73
INLINE-DECLARATIONS, 73
INSPECTOR-HOOK, 34
JAVA-OBJECT-TO-STRING-LENGTH, 21
LISP-HOME, 34
LOAD-TRUENAME-FASL, 34

WARN-ON-REDEFINITION, 35
+CL-PACKAGE+, 74
+FALSE+, 21
+FALSE-TYPE+, 74
+FIXNUM-TYPE+, 74
+INTEGER-TYPE+, 74
+KEYWORD-PACKAGE+, 74
+NULL+, 21
+SLOT-UNBOUND+, 74
+TRUE+, 21
+TRUE-TYPE+, 74

ABCL-ASDF, 51
ABCL-BUILD, 55
ABCL-INTROSPECT, 53

ACCESSOR-METHOD-SLOT-DEFINITION, 60

ADD-DEPENDENT, 60
ADD-DIRECT-METHOD, 60
ADD-DIRECT-SUBCLASS, 60

ADD-PACKAGE-LOCAL-NICKNAME;, 35, 46

ADD-TO-CLASSPATH, 21
ADJOIN-EQL, 35

ALLOCATE-FUNCALLABLE-INSTANCE, 68

ARGLIST, 35
AS-JAR-PATHNAME-ARCHIVE, 35
ASDF-JAR, 52

ASET, 74

ASSQ, 35

ASSQL, 35

AUTOCOMPILE, 74

AUTOLOAD, 35

LOGICAL-PATHNAME-TRANSLATIONS, 73AUTOLOAD-MACRO, 35

MUFFLE-WARNINGS, 90
NOINFORM, 73
PRINT-STRUCTURE, 34
REQUIRE-STACK-FRAME, 35
SAFETY, 73
SAVED-BACKTRACE, 35
SOURCE, 73
SOURCE-POSITION, 73
SPACE, 73

SPEED, 73
SUPPRESS-COMPILER-WARNINGS, 35
THREADING-MODEL¥, 30
TRACED-NAMES, 74

94

AUTOLOAD-REF-P, 35
AUTOLOAD-SETF-EXPANDER, 35
AUTOLOAD-SETF-FUNCTION, 35
AUTOLOADP, 36
AVAILABLE-ENCODINGS, 74
AVER, 74

BACKTRACE, 74
BUILT-IN-FUNCTION-P, 74

CACHE-EMF, 74
CADDR, 34
CADR, 34

INDEX 95

CALL-COUNT, 74 COMPUTE-EFFECTIVE-SLOT-DEFINITION,

CALL-REGISTERS-LIMIT, 75 61

CANCEL-FINALIZATION, 36 COMPUTE-SLOTS, 61

CANONICALIZE-DIRECT-SUPERCLASSES, 60CONCATENATE-FASLS, 76

CANONICALIZE-LOGICAL-HOST, 75 CONTEXT-CLASSLOADER, 21

CAR, 34 CURRENT-THREAD, 30

CDR, 34

CHAIN, 21 DEFCONST, 76

CHAR-TO-UTEFS, 36 DEFGENERIC, 60

CHARPOS, 36 DEFINE-JAVA-CLASS, 21

CHECK-DECLARATION-TYPE, 75 DEFINE-SOURCE-TRANSFORM, 76

CHECK-SEQUENCE-BOUNDS, 75 DEFKNOWN, 76

CHOOSE-DISASSEMBLER, 75 DEFPACKAGE, 46

CL:DISASSEMBLE, 53 DEFUN, 68

CLASS-BYTES, 75 DELETE-EQ, 76

CLASS-DEFAULT-INITARGS, 60, 68 DELETE-EQL, 76

CLASS-DIRECT-DEFAULT-INITARGS, 60, 68 DESCRIBE-COMPILER-POLICY, 76

CLASS-DIRECT-METHODS, 60, 68 DESCRIBE-JAVA-OBJECT, 21

CLASS-DIRECT-SLOTS, 60, 68 DESTROY-THREAD, 30

CLASS-DIRECT-SUBCLASSES, 60, 68 DIRECT-SLOT-DEFINITION, 61

CLASS-DIRECT-SUPERCLASSES, 60, 68 DIRECT-SLOT-DEFINITION-CLASS, 61

CLASS-DOCUMENTATION, 60 DISABLE-ZIP-CACHE, 76

CLASS-FINALIZED-P, 60, 68 DISASSEMBLE-CLASS-BYTES, 76

CLASS-LAYOUT, 68 DOCUMENTATION, 68

CLASS-NAME, 68 DOUBLE-FLOAT-HIGH-BITS, 76

CLASS-PRECEDENCE-LIST, 60, 68 DOUBLE-FLOAT-LOW-BITS, 77

CLASS-PROTOTYPE, 60 DOUBLE-FLOAT-NEGATIVE-INFINITY, 36

CLASS-SLOTS, 61, 68 DOUBLE-FLOAT-POSITIVE-INFINITY, 36

CLASSFILES-IMPORT, 90 DUMP-CLASSPATH, 22

CLASSLOADER, 21 DUMP-FORM, 77

CLASSP, 36 DUMP-JAVA-STACK, 36

CLEAR-ZIP-CACHE, 75 DUMP-UNINTERNED-SYMBOL-INDEX, 77

COERCE-TO-CONDITION, 75

COERCE-TO-FUNCTION, 75 EFFECTIVE-SLOT-DEFINITION, 61

COLLECT, 36 EFFECTIVE-SLOT-DEFINITION-CLASS, 61

Command Line Options, 11 EMPTY-ENVIRONMENT-P, 77

COMPILE-FILE-IF-NEEDED, 75 ENSURE-CLASS, 61

COMPILE-SYSTEM, 36, 75 ENSURE-CLASS-USING-CLASS, 61

COMPILED-LISP-FUNCTION-P, 75 ENSURE-COMPATIBILITY, 90

COMPILER-BYTECODE-LENGTH-ERROR, 75SENSURE-GENERIC-FUNCTION-USING-CLASS,

COMPILER-DEFSTRUCT, 75 61

COMPILER-ERROR, 76 ENSURE-JAVA-CLASS, 22

COMPILER-MACROEXPAND, 76 ENSURE-JAVA-OBJECT, 22

COMPILER-STYLE-WARN, 76 ENVIRONMENT, 77

COMPILER-SUBTYPEP, 76 ENVIRONMENT-ADD-FUNCTION-DEFINITION,

COMPILER-UNSUPPORTED, 76 7

COMPILER-WARN, 76 ENVIRONMENT-ADD-MACRO-DEFINITION,

COMPUTE-APPLICABLE-METHODS, 61 7

COMPUTE-APPLICABLE-METHODS-USING- ENVIRONMENT-ADD-SYMBOL-BINDING, 77
CLASSES, 61 ENVIRONMENT-ALL-FUNCTIONS, 77

COMPUTE-CLASS-PRECEDENCE-LIST, 61 ENVIRONMENT-ALL-VARIABLES, 77

COMPUTE-DEFAULT-INITARGS, 61 ENVIRONMENT-VARIABLES, 77

COMPUTE-DISCRIMINATING-FUNCTION, 61EQL-SPECIALIZER, 62
COMPUTE-EFFECTIVE-METHOD, 61 EQL-SPECIALIZER-OBJECT, 62

96

EXIT, 36

EXPAND-INLINE, 77
EXPAND-SOURCE-TRANSFORM, 77
EXTRACT-LAMBDA-LIST, 62
EXTRACT-SPECIALIZER-NAMES, 62

FDEFINITION-BLOCK-NAME, 77
FEATUREP, 37
FILE-DIRECTORY-P, 37

FINALIZE, 37
FINALIZE-INHERITANCE, 62
FIND-CONTRIB, 77
FIND-JAVA-CLASS, 90
FIND-LOCALS, 78
FIND-METHOD-COMBINATION, 62
FIND-SYSTEM, 78
FIXNUM-CONSTANT-VALUE, 78
FIXNUM-TYPE-P, 78

FIXNUMP, 37

FLOAT-BITS, 68
FLOAT-INFINITY-P, 78
FLOAT-NAN-P, 78
FLOAT-OVERFLOW-MODE, 78
FLOAT-STRING, 78
FLOAT-UNDERFLOW-MODE, 78
FORWARD-REFERENCED-CLASS, 62, 78
FRAME-TO-LIST, 78
FRAME-TO-STRING, 78

FSET, 78

FTYPE-RESULT-TYPE, 78
FUNCALLABLE-STANDARD-CLASS, 62

INDEX

CET-JAVA-THREAD, 30
CGET-MUTEX, 30

GET-PID, 37

GET-SOCKET-STREAM, 37
GET-TIME-ZONE, 37

GETENV, 37

GETENV-ALL, 37

GETHASHI, 79
GROVEL-JAVA-DEFINITIONS-IN-FILE, 79

HASH-TABLE-WEAKNESS, 79
HASHMAP-TO-HASHTABLE, 90
History, 57

HOT-COUNT, 79

IDENTITY-HASH-CODE, 79
IN-PACKAGE, 68

INIT-FASL, 79

INIT-GUI, 37
INLINE-EXPANSION, 79
INLINE-P, 79
INSPECTED-PARTS, 79
INTEGER-CONSTANT-VALUE, 79
INTEGER-TYPE-HIGH, 79
INTEGER-TYPE-LOW, 79
INTEGER-TYPE-P, 79
INTERACTIVE-EVAL, 80
INTERN-EQL-SPECIALIZER, 63
INTERNAL-COMPILER-ERROR, 80
INTERRUPT-LISP, 37
INTERRUPT-THREAD, 30

FUNCALLABLE-STANDARD-INSTANCE-ACCESSOKE-ADD-IMPORTS, 90

62
FUNCALLABLE-STANDARD-OBJECT, 62
FUNCTION-PLIST, 78
FUNCTION-RESULT-TYPE, 78

GC, 37

INVOKE-RESTARGS, 90
ITERABLE-TO-LIST, 90

J2LIST, 90
JAPROPOS, 91
JAR-IMPORT, 91

GENERIC-FUNCTION-ARGUMENT-PRECEDHNGFPATHNAME, 37, 45

ORDER, 62

JAR-STREAM, 80

GENERIC-FUNCTION-DECLARATIONS, 62 JARRAY-COMPONENT-TYPE, 22

GENERIC-FUNCTION-LAMBDA-LIST, 62

JARRAY-FROM-LIST, 22

GENERIC-FUNCTION-METHOD-CLASS, 62 JARRAY-LENGTH, 22
GENERIC-FUNCTION-METHOD-COMBINATIONRRAY-REF, 22

62
GENERIC-FUNCTION-METHODS, 62
GENERIC-FUNCTION-NAME, 63
GET-CACHED-EMF, 79
GET-CURRENT-CLASSLOADER, 22
GET-DEFAULT-CLASSLOADER, 22
GET-FLOATING-POINT-MODES, 37
GET-FUNCTION-INFO-VALUE, 79
GET-INPUT-STREAM, 79
GET-JAVA-FIELD, 90

JARRAY-REF-RAW, 22
JARRAY-SET, 22
JARRAY-TO-LIST, 91
JAVA-CLASS, 22
JAVA-CLASS-METHOD-NAMES, 91
JAVA-EXCEPTION, 22
JAVA-EXCEPTION-CAUSE, 22
JAVA-LONG-TYPE-P, 80
JAVA-OBJECT, 23
JAVA-OBJECT-P, 23

INDEX

JAVA.CLASS.PATH, 80

JCALL, 23

JCALL-RAW, 23

JCLASS, 23
JCLASS-ALL-INTERFACES, 91
JCLASS-ARRAY-P, 23
JCLASS-CONSTRUCTORS, 23
JCLASS-FIELD, 23
JCLASS-FIELDS, 23
JCLASS-INTERFACE-P, 23
JCLASS-INTERFACES, 23
JCLASS-METHODS, 23
JCLASS-NAME, 23
JCLASS-OF, 24
JCLASS-SUPERCLASS, 24
JCLASS-SUPERCLASS-P, 24
JCMN, 91

JCOERCE, 24
JCONSTRUCTOR, 24
JCONSTRUCTOR-PARAMS, 24
JEQUAL, 24

JFIELD, 24

JFIELD-NAME, 24
JFIELD-RAW, 25
JFIELD-TYPE, 25
JINPUT-STREAM, 25
JINSTANCE-OF-P, 25
JINTERFACE-IMPLEMENTATION, 25
JLIST-TO-LIST, 91
JMAKE-INVOCATION-HANDLER, 25
JMAKE-PROXY, 25

JMAP, 91
JMEMBER-PROTECTED-P, 26
JMEMBER-PUBLIC-P, 26
JMEMBER-STATIC-P, 26
JMETHOD, 26
JMETHOD-LET, 26
JMETHOD-NAME, 26
JMETHOD-PARAMS, 26
JMETHOD-RETURN-TYPE, 26
JNEW, 26

JNEW-ARRAY, 26
JNEW-ARRAY-FROM-ARRAY, 26
JNEW-ARRAY-FROM-LIST, 26
JNEW-RUNTIME-CLASS, 27
JNULL-REF-P, 27
JOBJECT-CLASS, 27
JOBJECT-LISP-VALUE, 27
JPROPERTY-VALUE, 27
JREGISTER-HANDLER, 27
JRESOLVE-METHOD, 28
JRUN-EXCEPTION-PROTECTED, 28
JSS, 52

JSTATIC, 28

JSTATIC-RAW, 28
JTYPECASE, 91
JTYPEP, 91

LAMBDA-NAME, 80
LAYOUT-CLASS, 80
LAYOUT-LENGTH, 80
LAYOUT-SLOT-INDEX, 80
LAYOUT-SLOT-LOCATION, 80
LIST-DELETE-EQ, 80
LIST-DELETE-EQL, 80
LIST-DIRECTORY, 80
LIST-TO-LIST, 91
LOAD-COMPILED-FUNCTION, 80
LOAD-SYSTEM-FILE, 80
LOGICAL-HOST-P, 80
LOGICAL-PATHNAME-P, 81
LOOKUP-KNOWN-SYMBOL, 81

MACRO-FUNCTION-P, 81
MACROEXPAND-ALL, 38
MAILBOX, 38
MAILBOX-EMPTY-P, 30
MAILBOX-PEEK, 30
MAILBOX-READ, 30
MAILBOX-SEND, 30
MAKE-ARRAY, 49
MAKE-CLASSLOADER, 28
MAKE-CLOSURE, 81
MAKE-COMPILER-TYPE, 81
MAKE-CONDITION, 69

MAKE-DIALOG-PROMPT-STREAM, 38

MAKE-DOUBLE-FLOAT, 81
MAKE-EMF-CACHE, 69
MAKE-ENVIRONMENT, 81
MAKE-FILE-STREAM, 81

97

MAKE-FILL-POINTER-OUTPUT-STREAM, 81

MAKE-IMMEDIATE-OBJECT, 28
MAKE-INSTANCES-OBSOLETE, 69
MAKE-INTEGER-TYPE, 69, 81
MAKE-KEYWORD, 81
MAKE-LAYOUT, 81

MAKE-LIST, 69
MAKE-LOGICAL-PATHNAME, 69
MAKE-MACRO, 81
MAKE-MACRO-EXPANDER, 81
MAKE-MAILBOX, 30
MAKE-METHOD-LAMBDA, 63
MAKE-MUTEX, 30
MAKE-SERVER-SOCKET, 38
MAKE-SINGLE-FLOAT, 81
MAKE-SLIME-INPUT-STREAM, 38
MAKE-SLIME-OUTPUT-STREAM, 38
MAKE-SLOT-DEFINITION, 69

98

MAKE-SOCKET, 38
MAKE-STRUCTURE, 69, 82
MAKE-SYMBOL-MACRO, 82
MAKE-TEMP-DIRECTORY, 38
MAKE-TEMP-FILE, 38
MAKE-THREAD, 30
MAKE-THREAD-LOCK, 31
MAKE-WEAK-REFERENCE, 38
MAP-DEPENDENTS, 63
MAPCAR-THREADS, 31
MATCH-WILD-JAR-PATHNAME, 82
MEMBER, 69

MEMQ, 38

MEMQL, 38

METAOBJECT, 63
METHOD-FUNCTION, 63
METHOD-GENERIC-FUNCTION, 63
METHOD-LAMBDA-LIST, 63
METHOD-QUALIFIERS, 63
METHOD-SPECIALIZERS, 63
MOST-NEGATIVE-JAVA-LONG, 38
MOST-POSITIVE-JAVA-LONG, 38
MUTEX, 38

NAMED-LAMBDA, 82
NAMED-READTABLES, 55
NEQ, 38

NEW, 92

NIL-VECTOR, 39
NORMALIZE-TYPE, 82
NOTE-NAME-DEFINED, 82
NOTINLINE-P, 82
NSTRING-CAPITALIZE, 69
NSTRING-DOWNCASE, 69
NSTRING-UPCASE, 69

OBJECT-NOTIFY, 31
OBJECT-NOTIFY-ALL, 31
OBJECT-WAIT, 31
OS-UNIX-P, 39
OS-WINDOWS-P, 39
OUT-SYNONYM-OF, 82
OUTPUT-OBJECT, 69, 82

PACKAGE-EXTERNAL-SYMBOLS, 82
PACKAGE-INHERITED-SYMBOLS, 82

PACKAGE-INTERNAL-SYMBOLS, 82

PACKAGE-LOCAL-NICKNAMES, 39, 46

INDEX

PATHNAME-URL-P, 39, 44
POSIX-SYSCALLS, 49
PRECOMPILE, 39, 82
PROBE-DIRECTORY, 39
PROCESS-ALIVE-P, 82
PROCESS-ERROR, 83
PROCESS-EXIT-CODE, 83
PROCESS-INPUT, 83
PROCESS-KILL, 83
PROCESS-OPTIMIZATION-DECLARATIONS,
83
PROCESS-OUTPUT, 83
PROCESS-P, 83
PROCESS-PID, 83
PROCESS-WAIT, 83
PROCLAIMED-FTYPE, 83
PROCLAIMED-TYPE, 83
PSXHASH, 83
PUT, 83
PUTF, 69
PUTHASH, 83

QUIT, 39

READ-8-BITS, 83

READ-CLASS, 39

READ-TIMEOUT, 39

READ-VECTOR-UNSIGNED-BYTE-8, 83

READER-METHOD-CLASS, 63

RECORD-SOURCE-INFORMATION, 84

RECORD-SOURCE-INFORMATION-FOR-TYPE,
84

REGISTER-JAVA-EXCEPTION, 28

REINIT-EMF-CACHE, 69

RELEASE-MUTEX, 31

REMEMBER, 84

REMOVE-DEPENDENT, 63

REMOVE-DIRECT-METHOD, 63

REMOVE-DIRECT-SUBCLASS, 63

REMOVE-PACKAGE-LOCAL-NICKNAME, 39,
46

REMOVE-ZIP-CACHE-ENTRY, 84

REPL, 11

REQUIRE-TYPE, 84

RESOLVE, 39

RUN-PROGRAM, 84

RUN-SHELL-COMMAND, 39

PACKAGE-LOCALLY-NICKNAMED-BY-LIST, SERVER-SOCKET-CLOSE, 40

39, 46
PACKAGE-SYMBOLS, 82
PARSE-BODY, 82
PATHNAME, 43
PATHNAME-JAR-P, 39

SET-CALL-COUNT, 85

SET-CAR, 85

SET-CDR, 85

SET-CHAR, 85
SET-CLASS-DEFAULT-INITARGS, 69

INDEX 99

SET-CLASS-DIRECT-DEFAULT-INITARGS, 70 SOCKET-CLOSE, 40

SET-CLASS-DIRECT-METHODS, 70 SOCKET-LOCAL-ADDRESS, 40
SET-CLASS-DIRECT-SLOTS, 70 SOCKET-LOCAL-PORT, 40
SET-CLASS-DIRECT-SUBCLASSES, 70 SOCKET-PEER-ADDRESS, 40
SET-CLASS-DIRECT-SUPERCLASSES, 70 SOCKET-PEER-PORT, 40
SET-CLASS-DOCUMENTATION, 70 SOURCE, 40
SET-CLASS-FINALIZED-P, 70 SOURCE-FILE-POSITION, 41
SET-CLASS-LAYOUT, 70 SOURCE-PATHNAME, 41
SET-CLASS-NAME, 70 SOURCE-TRANSFORM, 86
SET-CLASS-PRECEDENCE-LIST, 70 SPECIAL-VARIABLE-P, 41
SET-CLASS-SLOTS, 70 SPECIALIZER, 64
SET-DOCUMENTATION, 70 SPECIALIZER-DIRECT-GENERIC-FUNCTIONS,
SET-FILL-POINTER, 70 64
SET-FIND-CLASS, 70 SPECIALIZER-DIRECT-METHODS, 64
SET-FLOATING-POINT-MODES, 40 STANDARD-ACCESSOR-METHOD, 65
SET-FUNCALLABLE-INSTANCE-FUNCTION, STANDARD-DIRECT-SLOT-DEFINITION, 65
63 STANDARD-EFFECTIVE-SLOT-DEFINITION,
SET-FUNCTION-INFO-VALUE, 85 65
SET-HOT-COUNT, 85 STANDARD-INSTANCE-ACCESS, 65, 86
SET-JAVA-FIELD, 92 STANDARD-METHOD, 65
SET-SCHAR, 86 STANDARD-OBJECT-P, 86
SET-STANDARD-INSTANCE-ACCESS, 70 STANDARD-READER-METHOD, 65
SET-STD-INSTANCE-LAYOUT, 70 STANDARD-SLOT-DEFINITION, 65
SET-STD-SLOT-VALUE, 86 STANDARD-WRITER-METHOD, 65
SET-TO-LIST, 92 STD-ALLOCATE-INSTANCE, 71
SETF-FUNCTION-NAME-P, 86 STD-INSTANCE-CLASS, 86
SHA256, 86 STD-INSTANCE-LAYOUT, 86
SHOW-RESTARTS, 40 STD-SLOT-BOUNDP, 86
SHRINK-VECTOR, 86 STD-SLOT-VALUE, 87
SIMPLE-FORMAT, 86 STREAM-OUTPUT-OBJECT, 71
SIMPLE-SEARCH, 86 STREAM-TERPRI, 71
SIMPLE-STRING-FILL, 40 STREAM-UNIX-FD, 41
SIMPLE-STRING-SEARCH, 40 STREAM-WRITE-CHAR, 71
SIMPLE-TYPEP, 86 STRING-CAPITALIZE, 71
SINGLE-FLOAT-BITS, 86 STRING-DOWNCASE, 71

SINGLE-FLOAT-NEGATIVE-INFINITY, 40 STRING-EQUAL, 71
SINGLE-FLOAT-POSITIVE-INFINITY, 40 STRING-FIND, 41

SLIME-INPUT-STREAM, 40 STRING-GREATERP, 71
SLIME-OUTPUT-STREAM, 40 STRING-INPUT-STREAM-CURRENT, 41
SLOT-BOUNDP-USING-CLASS, 63 STRING-LESSP, 71
SLOT-DEFINITION, 64, 86 STRING-NOT-EQUAL, 71
SLOT-DEFINITION-ALLOCATION, 64 STRING-NOT-GREATERP, 71
SLOT-DEFINITION-DOCUMENTATION, 64 STRING-NOT-LESSP, 71
SLOT-DEFINITION-INITARGS, 64 STRING-POSITION, 41
SLOT-DEFINITION-INITFORM, 64 STRING-UPCASE, 71
SLOT-DEFINITION-INITFUNCTION, 64 STRING/=, 71
SLOT-DEFINITION-LOCATION, 64 STRING;, 71
SLOT-DEFINITION-NAME, 64 STRING|=, 71
SLOT-DEFINITION-READERS, 64 STRING,, 72
SLOT-DEFINITION-TYPE, 64 STRING,;=, 72
SLOT-DEFINITION-WRITERS, 64 STRUCTURE-LENGTH, 87
SLOT-MAKUNBOUND-USING-CLASS, 64 STRUCTURE-OBJECT-P, 87
SLOT-VALUE-USING-CLASS, 64 STRUCTURE-REF, 87

SOCKET-ACCEPT, 40 STRUCTURE-SET, 87

100 INDEX

STYLE-WARN, 41
SUBCLASSP, 87

SVSET, 87

SWAP-SLOTS, 87

SYMBOL-MACRO-P, 87
SYNCHRONIZED-ON, 31
SYSTEM-ARTIFACTS-ARE-JARS-P, 87

THREAD, 31

THREAD-ALIVE-P, 31
THREAD-FUNCTION-WRAPPER, 31
THREAD-JOIN, 31

THREAD-NAME, 31

Threading Models, 29

THREADP, 31

TO-HASHSET, 92

TRULY-THE, 41

TYPE-ERROR, 72

UNDEFINED-FUNCTION-CALLED, 87
UNREGISTER-JAVA-EXCEPTION, 28
UNTRACED-FUNCTION, 87

UNZIP, 87

UPDATE-DEPENDENT, 65

UPTIME, 41

URI-DECODE, 41

URIL-ENCODE, 41

URL-PATHNAME, 41, 44
URL-PATHNAME-AUTHORITY, 41, 44
URL-PATHNAME-FRAGMENT, 41, 44
URL-PATHNAME-QUERY, 41, 44
URL-PATHNAME-SCHEME, 42, 44
URL-STREAM, 87

VALIDATE-SUPERCLASS, 65
VECTOR-DELETE-EQ, 87
VECTOR-DELETE-EQL, 87
VECTOR-TO-LIST, 92

WEAK-REFERENCE, 42
WEAK-REFERENCE-VALUE, 42
WHITESPACEP, 88
WILD-PATHNAME-P, 72
WITH-CLASSLOADER, 28
WITH-CONSTANT-SIGNATURE, 92
WITH-MUTEX, 32
WITH-THREAD-LOCK, 32
WRITE-8-BITS, 88

WRITE-CLASS, 42
WRITE-TIMEOUT, 42
WRITE-VECTOR-UNSIGNED-BYTE-8, 88
WRITER-METHOD-CLASS, 65

YIELD, 32
ZIP, 88

	Preface to the First Edition
	Preface to the Second Edition
	Preface to the Third Edition
	Preface to the Fourth Edition
	Preface to the Fifth Edition
	Preface to the Sixth Edition
	Preface to the Seventh Edition
	Preface to the Eighth Edition
	Preface to the Ninth Edition
	Preface to the Tenth Edition
	Preface to the Eleventh Edition
	Introduction
	Conformance
	ANSI Common Lisp
	Contemporary Common Lisp

	License
	Contributors

	Running ABCL
	Command Line Options
	Initialization

	Interaction with the Hosting JVM
	Lisp to Java
	Low-level Java API

	Java to Lisp
	Calling Lisp from Java

	Java Scripting API (JSR-223)
	Conversions
	Implemented JSR-223 interfaces
	Start-up and configuration file
	Evaluation
	Compilation
	Invocation of functions and methods
	Implementation of Java interfaces in Lisp

	Implementation Extension Dictionaries
	The JAVA Dictionary
	The THREADS Dictionary
	The EXTENSIONS Dictionary

	Beyond ANSI
	Compiler to Java Virtual Machine Bytecode
	Compiler Diagnostics
	Decompilation

	Pathname
	Package-Local Nicknames
	Extensible Sequences
	Extensions to CLOS
	Metaobject Protocol
	Specializing on Java classes
	Subtypes of mop:specializer

	Extensions to the Reader
	Overloading of the CL:REQUIRE Mechanism
	JSS extension of the Reader by SHARPSIGN-DOUBLE-QUOTE
	ASDF
	Extension to CL:MAKE-ARRAY

	Contrib
	abcl-asdf
	Referencing Maven Artifacts via ASDF
	API
	Directly Instructing Maven to Download JVM Artifacts

	asdf-jar
	jss
	JSS usage

	jfli
	abcl-introspect
	Implementations for CL:DISASSEMBLE

	abcl-build
	ABCL-BUILD Utilities

	named-readtables

	History
	The MOP Dictionary
	The SYSTEM Dictionary
	The JSS Dictionary

