1 | /* |
---|
2 | * MathFunctions.java |
---|
3 | * |
---|
4 | * Copyright (C) 2004-2006 Peter Graves |
---|
5 | * $Id: MathFunctions.java 13440 2011-08-05 21:25:10Z ehuelsmann $ |
---|
6 | * |
---|
7 | * This program is free software; you can redistribute it and/or |
---|
8 | * modify it under the terms of the GNU General Public License |
---|
9 | * as published by the Free Software Foundation; either version 2 |
---|
10 | * of the License, or (at your option) any later version. |
---|
11 | * |
---|
12 | * This program is distributed in the hope that it will be useful, |
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
15 | * GNU General Public License for more details. |
---|
16 | * |
---|
17 | * You should have received a copy of the GNU General Public License |
---|
18 | * along with this program; if not, write to the Free Software |
---|
19 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
---|
20 | * |
---|
21 | * As a special exception, the copyright holders of this library give you |
---|
22 | * permission to link this library with independent modules to produce an |
---|
23 | * executable, regardless of the license terms of these independent |
---|
24 | * modules, and to copy and distribute the resulting executable under |
---|
25 | * terms of your choice, provided that you also meet, for each linked |
---|
26 | * independent module, the terms and conditions of the license of that |
---|
27 | * module. An independent module is a module which is not derived from |
---|
28 | * or based on this library. If you modify this library, you may extend |
---|
29 | * this exception to your version of the library, but you are not |
---|
30 | * obligated to do so. If you do not wish to do so, delete this |
---|
31 | * exception statement from your version. |
---|
32 | */ |
---|
33 | |
---|
34 | package org.armedbear.lisp; |
---|
35 | |
---|
36 | import static org.armedbear.lisp.Lisp.*; |
---|
37 | |
---|
38 | public final class MathFunctions |
---|
39 | { |
---|
40 | |
---|
41 | // Implementation of section 12.1.5.3, which says: |
---|
42 | // "If the result of any computation would be a complex number whose |
---|
43 | // real part is of type rational and whose imaginary part is zero, |
---|
44 | // the result is converted to the rational which is the real part." |
---|
45 | private static final LispObject complexToRealFixup(LispObject result, |
---|
46 | LispObject arg) |
---|
47 | { |
---|
48 | if (result instanceof Complex |
---|
49 | && ! (arg instanceof Complex)) { |
---|
50 | Complex c = (Complex)result; |
---|
51 | LispObject im = c.getImaginaryPart(); |
---|
52 | if (im.zerop()) |
---|
53 | return c.getRealPart(); |
---|
54 | } |
---|
55 | return result; |
---|
56 | } |
---|
57 | |
---|
58 | // ### sin |
---|
59 | private static final Primitive SIN = new Primitive("sin", "radians") |
---|
60 | { |
---|
61 | @Override |
---|
62 | public LispObject execute(LispObject arg) |
---|
63 | { |
---|
64 | return sin(arg); |
---|
65 | } |
---|
66 | }; |
---|
67 | |
---|
68 | static LispObject sin(LispObject arg) |
---|
69 | { |
---|
70 | if (arg instanceof DoubleFloat) |
---|
71 | return new DoubleFloat(Math.sin(((DoubleFloat)arg).value)); |
---|
72 | if (arg.realp()) |
---|
73 | return new SingleFloat((float)Math.sin(SingleFloat.coerceToFloat(arg).value)); |
---|
74 | if (arg instanceof Complex) { |
---|
75 | LispObject n = arg.multiplyBy(Complex.getInstance(Fixnum.ZERO, |
---|
76 | Fixnum.ONE)); |
---|
77 | LispObject result = exp(n); |
---|
78 | result = result.subtract(exp(n.multiplyBy(Fixnum.MINUS_ONE))); |
---|
79 | return result.divideBy(Fixnum.TWO.multiplyBy(Complex.getInstance(Fixnum.ZERO, |
---|
80 | Fixnum.ONE))); |
---|
81 | } |
---|
82 | return type_error(arg, Symbol.NUMBER); |
---|
83 | } |
---|
84 | |
---|
85 | // ### cos |
---|
86 | private static final Primitive COS = new Primitive("cos", "radians") |
---|
87 | { |
---|
88 | @Override |
---|
89 | public LispObject execute(LispObject arg) |
---|
90 | { |
---|
91 | return cos(arg); |
---|
92 | } |
---|
93 | }; |
---|
94 | |
---|
95 | static LispObject cos(LispObject arg) |
---|
96 | { |
---|
97 | if (arg instanceof DoubleFloat) |
---|
98 | return new DoubleFloat(Math.cos(((DoubleFloat)arg).value)); |
---|
99 | if (arg.realp()) |
---|
100 | return new SingleFloat((float)Math.cos(SingleFloat.coerceToFloat(arg).value)); |
---|
101 | if (arg instanceof Complex) { |
---|
102 | LispObject n = arg.multiplyBy(Complex.getInstance(Fixnum.ZERO, |
---|
103 | Fixnum.ONE)); |
---|
104 | LispObject result = exp(n); |
---|
105 | result = result.add(exp(n.multiplyBy(Fixnum.MINUS_ONE))); |
---|
106 | return result.divideBy(Fixnum.TWO); |
---|
107 | } |
---|
108 | return type_error(arg, Symbol.NUMBER); |
---|
109 | } |
---|
110 | |
---|
111 | // ### tan |
---|
112 | private static final Primitive TAN = new Primitive("tan", "radians") |
---|
113 | { |
---|
114 | @Override |
---|
115 | public LispObject execute(LispObject arg) |
---|
116 | { |
---|
117 | if (arg instanceof DoubleFloat) |
---|
118 | return new DoubleFloat(Math.tan(((DoubleFloat)arg).value)); |
---|
119 | if (arg.realp()) |
---|
120 | return new SingleFloat((float)Math.tan(SingleFloat.coerceToFloat(arg).value)); |
---|
121 | return sin(arg).divideBy(cos(arg)); |
---|
122 | } |
---|
123 | }; |
---|
124 | |
---|
125 | // ### asin |
---|
126 | private static final Primitive ASIN = new Primitive("asin", "number") |
---|
127 | { |
---|
128 | @Override |
---|
129 | public LispObject execute(LispObject arg) |
---|
130 | { |
---|
131 | return asin(arg); |
---|
132 | } |
---|
133 | }; |
---|
134 | |
---|
135 | static LispObject asin(LispObject arg) |
---|
136 | { |
---|
137 | if (arg instanceof SingleFloat) { |
---|
138 | float f = ((SingleFloat)arg).value; |
---|
139 | if (Math.abs(f) <= 1) |
---|
140 | return new SingleFloat((float)Math.asin(f)); |
---|
141 | } |
---|
142 | if (arg instanceof DoubleFloat) { |
---|
143 | double d = ((DoubleFloat)arg).value; |
---|
144 | if (Math.abs(d) <= 1) |
---|
145 | return new DoubleFloat(Math.asin(d)); |
---|
146 | } |
---|
147 | LispObject result = arg.multiplyBy(arg); |
---|
148 | result = Fixnum.ONE.subtract(result); |
---|
149 | result = sqrt(result); |
---|
150 | LispObject n = Complex.getInstance(Fixnum.ZERO, Fixnum.ONE); |
---|
151 | n = n.multiplyBy(arg); |
---|
152 | result = n.add(result); |
---|
153 | result = log(result); |
---|
154 | result = result.multiplyBy(Complex.getInstance(Fixnum.ZERO, |
---|
155 | Fixnum.MINUS_ONE)); |
---|
156 | |
---|
157 | return complexToRealFixup(result, arg); |
---|
158 | } |
---|
159 | |
---|
160 | // ### acos |
---|
161 | private static final Primitive ACOS = new Primitive("acos", "number") |
---|
162 | { |
---|
163 | @Override |
---|
164 | public LispObject execute(LispObject arg) |
---|
165 | { |
---|
166 | return acos(arg); |
---|
167 | } |
---|
168 | }; |
---|
169 | |
---|
170 | static LispObject acos(LispObject arg) |
---|
171 | { |
---|
172 | if (arg instanceof DoubleFloat) { |
---|
173 | double d = ((DoubleFloat)arg).value; |
---|
174 | if (Math.abs(d) <= 1) |
---|
175 | return new DoubleFloat(Math.acos(d)); |
---|
176 | } |
---|
177 | if (arg instanceof SingleFloat) { |
---|
178 | float f = ((SingleFloat)arg).value; |
---|
179 | if (Math.abs(f) <= 1) |
---|
180 | return new SingleFloat((float)Math.acos(f)); |
---|
181 | } |
---|
182 | LispObject result = new DoubleFloat(Math.PI/2); |
---|
183 | if (!(arg instanceof DoubleFloat)) { |
---|
184 | if (arg instanceof Complex && |
---|
185 | ((Complex)arg).getRealPart() instanceof DoubleFloat) { |
---|
186 | // do nothing; we want to keep the double float value |
---|
187 | } |
---|
188 | else |
---|
189 | result = new SingleFloat((float)((DoubleFloat)result).value); |
---|
190 | } |
---|
191 | result = result.subtract(asin(arg)); |
---|
192 | |
---|
193 | return complexToRealFixup(result, arg); |
---|
194 | } |
---|
195 | |
---|
196 | // ### atan |
---|
197 | private static final Primitive ATAN = |
---|
198 | new Primitive("atan", "number1 &optional number2") |
---|
199 | { |
---|
200 | @Override |
---|
201 | public LispObject execute(LispObject arg) |
---|
202 | { |
---|
203 | if (arg.numberp()) |
---|
204 | return atan(arg); |
---|
205 | return type_error(arg, Symbol.NUMBER); |
---|
206 | } |
---|
207 | |
---|
208 | // "If both number1 and number2 are supplied for atan, the result is |
---|
209 | // the arc tangent of number1/number2." |
---|
210 | |
---|
211 | // y = +0 x = +0 +0 |
---|
212 | // y = -0 x = +0 -0 |
---|
213 | // y = +0 x = -0 +<PI> |
---|
214 | // y = -0 x = -0 -<PI> |
---|
215 | @Override |
---|
216 | public LispObject execute(LispObject y, LispObject x) |
---|
217 | |
---|
218 | { |
---|
219 | if (!y.realp()) |
---|
220 | return type_error(y, Symbol.REAL); |
---|
221 | if (!x.realp()) |
---|
222 | return type_error(x, Symbol.REAL); |
---|
223 | double d1, d2; |
---|
224 | d1 = DoubleFloat.coerceToFloat(y).value; |
---|
225 | d2 = DoubleFloat.coerceToFloat(x).value; |
---|
226 | double result = Math.atan2(d1, d2); |
---|
227 | if (y instanceof DoubleFloat || x instanceof DoubleFloat) |
---|
228 | return new DoubleFloat(result); |
---|
229 | else |
---|
230 | return new SingleFloat((float)result); |
---|
231 | } |
---|
232 | }; |
---|
233 | |
---|
234 | static LispObject atan(LispObject arg) |
---|
235 | { |
---|
236 | if (arg instanceof Complex) { |
---|
237 | LispObject im = ((Complex)arg).imagpart; |
---|
238 | if (im.zerop()) |
---|
239 | return Complex.getInstance(atan(((Complex)arg).realpart), |
---|
240 | im); |
---|
241 | LispObject result = arg.multiplyBy(arg); |
---|
242 | result = result.add(Fixnum.ONE); |
---|
243 | result = Fixnum.ONE.divideBy(result); |
---|
244 | result = sqrt(result); |
---|
245 | LispObject n = Complex.getInstance(Fixnum.ZERO, Fixnum.ONE); |
---|
246 | n = n.multiplyBy(arg); |
---|
247 | n = n.add(Fixnum.ONE); |
---|
248 | result = n.multiplyBy(result); |
---|
249 | result = log(result); |
---|
250 | result = result.multiplyBy(Complex.getInstance(Fixnum.ZERO, Fixnum.MINUS_ONE)); |
---|
251 | return result; |
---|
252 | } |
---|
253 | if (arg instanceof DoubleFloat) |
---|
254 | return new DoubleFloat(Math.atan(((DoubleFloat)arg).value)); |
---|
255 | return new SingleFloat((float)Math.atan(SingleFloat.coerceToFloat(arg).value)); |
---|
256 | } |
---|
257 | |
---|
258 | // ### sinh |
---|
259 | private static final Primitive SINH = new Primitive("sinh", "number") |
---|
260 | { |
---|
261 | @Override |
---|
262 | public LispObject execute(LispObject arg) |
---|
263 | { |
---|
264 | return sinh(arg); |
---|
265 | } |
---|
266 | }; |
---|
267 | |
---|
268 | static LispObject sinh(LispObject arg) |
---|
269 | { |
---|
270 | if (arg instanceof Complex) { |
---|
271 | LispObject im = ((Complex)arg).getImaginaryPart(); |
---|
272 | if (im.zerop()) |
---|
273 | return Complex.getInstance(sinh(((Complex)arg).getRealPart()), |
---|
274 | im); |
---|
275 | } |
---|
276 | if (arg instanceof SingleFloat) { |
---|
277 | double d = Math.sinh(((SingleFloat)arg).value); |
---|
278 | return new SingleFloat((float)d); |
---|
279 | } else if (arg instanceof DoubleFloat) { |
---|
280 | double d = Math.sinh(((DoubleFloat)arg).value); |
---|
281 | return new DoubleFloat(d); |
---|
282 | } |
---|
283 | LispObject result = exp(arg); |
---|
284 | result = result.subtract(exp(arg.multiplyBy(Fixnum.MINUS_ONE))); |
---|
285 | result = result.divideBy(Fixnum.TWO); |
---|
286 | |
---|
287 | return complexToRealFixup(result, arg); |
---|
288 | } |
---|
289 | |
---|
290 | // ### cosh |
---|
291 | private static final Primitive COSH = new Primitive("cosh", "number") |
---|
292 | { |
---|
293 | @Override |
---|
294 | public LispObject execute(LispObject arg) |
---|
295 | { |
---|
296 | return cosh(arg); |
---|
297 | } |
---|
298 | }; |
---|
299 | |
---|
300 | static LispObject cosh(LispObject arg) |
---|
301 | { |
---|
302 | if (arg instanceof Complex) { |
---|
303 | LispObject im = ((Complex)arg).getImaginaryPart(); |
---|
304 | if (im.zerop()) |
---|
305 | return Complex.getInstance(cosh(((Complex)arg).getRealPart()), |
---|
306 | im); |
---|
307 | } |
---|
308 | if (arg instanceof SingleFloat) { |
---|
309 | double d = Math.cosh(((SingleFloat)arg).value); |
---|
310 | return new SingleFloat((float)d); |
---|
311 | } else if (arg instanceof DoubleFloat) { |
---|
312 | double d = Math.cosh(((DoubleFloat)arg).value); |
---|
313 | return new DoubleFloat(d); |
---|
314 | } |
---|
315 | LispObject result = exp(arg); |
---|
316 | result = result.add(exp(arg.multiplyBy(Fixnum.MINUS_ONE))); |
---|
317 | result = result.divideBy(Fixnum.TWO); |
---|
318 | |
---|
319 | return complexToRealFixup(result, arg); |
---|
320 | } |
---|
321 | |
---|
322 | // ### tanh |
---|
323 | private static final Primitive TANH = new Primitive("tanh", "number") |
---|
324 | { |
---|
325 | @Override |
---|
326 | public LispObject execute(LispObject arg) |
---|
327 | { |
---|
328 | if (arg instanceof SingleFloat) { |
---|
329 | double d = Math.tanh(((SingleFloat)arg).value); |
---|
330 | return new SingleFloat((float)d); |
---|
331 | } else if (arg instanceof DoubleFloat) { |
---|
332 | double d = Math.tanh(((DoubleFloat)arg).value); |
---|
333 | return new DoubleFloat(d); |
---|
334 | } |
---|
335 | return sinh(arg).divideBy(cosh(arg)); |
---|
336 | } |
---|
337 | }; |
---|
338 | |
---|
339 | // ### asinh |
---|
340 | private static final Primitive ASINH = new Primitive("asinh", "number") |
---|
341 | { |
---|
342 | @Override |
---|
343 | public LispObject execute(LispObject arg) |
---|
344 | { |
---|
345 | return asinh(arg); |
---|
346 | } |
---|
347 | }; |
---|
348 | |
---|
349 | static LispObject asinh(LispObject arg) |
---|
350 | { |
---|
351 | if (arg instanceof Complex) { |
---|
352 | LispObject im = ((Complex)arg).getImaginaryPart(); |
---|
353 | if (im.zerop()) |
---|
354 | return Complex.getInstance(asinh(((Complex)arg).getRealPart()), |
---|
355 | im); |
---|
356 | } |
---|
357 | LispObject result = arg.multiplyBy(arg); |
---|
358 | result = Fixnum.ONE.add(result); |
---|
359 | result = sqrt(result); |
---|
360 | result = result.add(arg); |
---|
361 | result = log(result); |
---|
362 | |
---|
363 | return complexToRealFixup(result, arg); |
---|
364 | } |
---|
365 | |
---|
366 | // ### acosh |
---|
367 | private static final Primitive ACOSH = new Primitive("acosh", "number") |
---|
368 | { |
---|
369 | @Override |
---|
370 | public LispObject execute(LispObject arg) |
---|
371 | { |
---|
372 | return acosh(arg); |
---|
373 | } |
---|
374 | }; |
---|
375 | |
---|
376 | static LispObject acosh(LispObject arg) |
---|
377 | { |
---|
378 | if (arg instanceof Complex) { |
---|
379 | LispObject im = ((Complex)arg).getImaginaryPart(); |
---|
380 | if (im.zerop()) |
---|
381 | return Complex.getInstance(acosh(((Complex)arg).getRealPart()), |
---|
382 | im); |
---|
383 | } |
---|
384 | LispObject n1 = arg.add(Fixnum.ONE); |
---|
385 | n1 = n1.divideBy(Fixnum.TWO); |
---|
386 | n1 = sqrt(n1); |
---|
387 | LispObject n2 = arg.subtract(Fixnum.ONE); |
---|
388 | n2 = n2.divideBy(Fixnum.TWO); |
---|
389 | n2 = sqrt(n2); |
---|
390 | LispObject result = n1.add(n2); |
---|
391 | result = log(result); |
---|
392 | result = result.multiplyBy(Fixnum.TWO); |
---|
393 | |
---|
394 | return complexToRealFixup(result, arg); |
---|
395 | } |
---|
396 | |
---|
397 | // ### atanh |
---|
398 | private static final Primitive ATANH = new Primitive("atanh", "number") |
---|
399 | { |
---|
400 | @Override |
---|
401 | public LispObject execute(LispObject arg) |
---|
402 | { |
---|
403 | return atanh(arg); |
---|
404 | } |
---|
405 | }; |
---|
406 | |
---|
407 | static LispObject atanh(LispObject arg) |
---|
408 | { |
---|
409 | if (arg instanceof Complex) { |
---|
410 | LispObject im = ((Complex)arg).getImaginaryPart(); |
---|
411 | if (im.zerop()) |
---|
412 | return Complex.getInstance(atanh(((Complex)arg).getRealPart()), |
---|
413 | im); |
---|
414 | } |
---|
415 | LispObject n1 = log(Fixnum.ONE.add(arg)); |
---|
416 | LispObject n2 = log(Fixnum.ONE.subtract(arg)); |
---|
417 | LispObject result = n1.subtract(n2); |
---|
418 | result = result.divideBy(Fixnum.TWO); |
---|
419 | |
---|
420 | return complexToRealFixup(result, arg); |
---|
421 | } |
---|
422 | |
---|
423 | // ### cis |
---|
424 | private static final Primitive CIS = new Primitive("cis", "radians") |
---|
425 | { |
---|
426 | @Override |
---|
427 | public LispObject execute(LispObject arg) |
---|
428 | { |
---|
429 | return cis(arg); |
---|
430 | } |
---|
431 | }; |
---|
432 | |
---|
433 | static LispObject cis(LispObject arg) |
---|
434 | { |
---|
435 | if (arg.realp()) |
---|
436 | return Complex.getInstance(cos(arg), sin(arg)); |
---|
437 | return type_error(arg, Symbol.REAL); |
---|
438 | } |
---|
439 | |
---|
440 | // ### exp |
---|
441 | private static final Primitive EXP = new Primitive("exp", "number") |
---|
442 | { |
---|
443 | @Override |
---|
444 | public LispObject execute(LispObject arg) |
---|
445 | { |
---|
446 | return exp(arg); |
---|
447 | } |
---|
448 | }; |
---|
449 | |
---|
450 | static LispObject exp(LispObject arg) |
---|
451 | { |
---|
452 | if (arg.realp()) { |
---|
453 | if (arg instanceof DoubleFloat) { |
---|
454 | double d = Math.pow(Math.E, ((DoubleFloat)arg).value); |
---|
455 | return OverUnderFlowCheck(new DoubleFloat(d)); |
---|
456 | } else { |
---|
457 | float f = (float) Math.pow(Math.E, SingleFloat.coerceToFloat(arg).value); |
---|
458 | return OverUnderFlowCheck(new SingleFloat(f)); |
---|
459 | } |
---|
460 | } |
---|
461 | if (arg instanceof Complex) { |
---|
462 | Complex c = (Complex) arg; |
---|
463 | return exp(c.getRealPart()).multiplyBy(cis(c.getImaginaryPart())); |
---|
464 | } |
---|
465 | return type_error(arg, Symbol.NUMBER); |
---|
466 | } |
---|
467 | |
---|
468 | // ### sqrt |
---|
469 | private static final Primitive SQRT = new Primitive("sqrt", "number") |
---|
470 | { |
---|
471 | @Override |
---|
472 | public LispObject execute(LispObject arg) |
---|
473 | { |
---|
474 | return sqrt(arg); |
---|
475 | } |
---|
476 | }; |
---|
477 | |
---|
478 | static final LispObject sqrt(LispObject obj) |
---|
479 | { |
---|
480 | if (obj instanceof DoubleFloat) { |
---|
481 | if (obj.minusp()) |
---|
482 | return Complex.getInstance(new DoubleFloat(0), sqrt(obj.negate())); |
---|
483 | return new DoubleFloat(Math.sqrt(DoubleFloat.coerceToFloat(obj).value)); |
---|
484 | } |
---|
485 | if (obj.realp()) { |
---|
486 | if (obj.minusp()) |
---|
487 | return Complex.getInstance(new SingleFloat(0), sqrt(obj.negate())); |
---|
488 | return new SingleFloat((float)Math.sqrt(SingleFloat.coerceToFloat(obj).value)); |
---|
489 | } |
---|
490 | if (obj instanceof Complex) { |
---|
491 | LispObject imagpart = ((Complex)obj).imagpart; |
---|
492 | if (imagpart.zerop()) { |
---|
493 | LispObject realpart = ((Complex)obj).realpart; |
---|
494 | if (realpart.minusp()) |
---|
495 | return Complex.getInstance(imagpart, sqrt(realpart.negate())); |
---|
496 | else |
---|
497 | return Complex.getInstance(sqrt(realpart), imagpart); |
---|
498 | } |
---|
499 | return exp(log(obj).divideBy(Fixnum.TWO)); |
---|
500 | } |
---|
501 | return type_error(obj, Symbol.NUMBER); |
---|
502 | } |
---|
503 | |
---|
504 | // ### log |
---|
505 | private static final Primitive LOG = |
---|
506 | new Primitive("log", "number &optional base") |
---|
507 | { |
---|
508 | @Override |
---|
509 | public LispObject execute(LispObject arg) |
---|
510 | { |
---|
511 | return log(arg); |
---|
512 | } |
---|
513 | @Override |
---|
514 | public LispObject execute(LispObject number, LispObject base) |
---|
515 | |
---|
516 | { |
---|
517 | if (number.realp() && !number.minusp() |
---|
518 | && base.isEqualTo(Fixnum.getInstance(10))) { |
---|
519 | double d = |
---|
520 | Math.log10(DoubleFloat.coerceToFloat(number).value); |
---|
521 | if (number instanceof DoubleFloat |
---|
522 | || base instanceof DoubleFloat) |
---|
523 | return new DoubleFloat(d); |
---|
524 | else |
---|
525 | return new SingleFloat((float)d); |
---|
526 | } |
---|
527 | return log(number).divideBy(log(base)); |
---|
528 | } |
---|
529 | }; |
---|
530 | |
---|
531 | static final LispObject log(LispObject obj) |
---|
532 | { |
---|
533 | if (obj.realp() && !obj.minusp()) { |
---|
534 | // Result is real. |
---|
535 | if (obj instanceof Fixnum) |
---|
536 | return new SingleFloat((float)Math.log(((Fixnum)obj).value)); |
---|
537 | if (obj instanceof Bignum) |
---|
538 | return new SingleFloat((float)Math.log(((Bignum)obj).doubleValue())); |
---|
539 | if (obj instanceof Ratio) |
---|
540 | return new SingleFloat((float)Math.log(((Ratio)obj).doubleValue())); |
---|
541 | if (obj instanceof SingleFloat) |
---|
542 | return new SingleFloat((float)Math.log(((SingleFloat)obj).value)); |
---|
543 | if (obj instanceof DoubleFloat) |
---|
544 | return new DoubleFloat(Math.log(((DoubleFloat)obj).value)); |
---|
545 | } else { |
---|
546 | // Result is complex. |
---|
547 | if (obj.realp() && obj.minusp()) { |
---|
548 | if (obj instanceof DoubleFloat) { |
---|
549 | DoubleFloat re = DoubleFloat.coerceToFloat(obj); |
---|
550 | DoubleFloat abs = new DoubleFloat(Math.abs(re.value)); |
---|
551 | DoubleFloat phase = new DoubleFloat(Math.PI); |
---|
552 | return Complex.getInstance(new DoubleFloat(Math.log(abs.getValue())), phase); |
---|
553 | } else { |
---|
554 | SingleFloat re = SingleFloat.coerceToFloat(obj); |
---|
555 | SingleFloat abs = new SingleFloat(Math.abs(re.value)); |
---|
556 | SingleFloat phase = new SingleFloat((float)Math.PI); |
---|
557 | return Complex.getInstance(new SingleFloat((float)Math.log(abs.value)), phase); |
---|
558 | } |
---|
559 | } else if (obj instanceof Complex) { |
---|
560 | if (((Complex)obj).getRealPart() instanceof DoubleFloat) { |
---|
561 | DoubleFloat re = DoubleFloat.coerceToFloat(((Complex)obj).getRealPart()); |
---|
562 | DoubleFloat im = DoubleFloat.coerceToFloat(((Complex)obj).getImaginaryPart()); |
---|
563 | DoubleFloat phase = |
---|
564 | new DoubleFloat(Math.atan2(im.getValue(), re.getValue())); // atan(y/x) |
---|
565 | DoubleFloat abs = DoubleFloat.coerceToFloat(obj.ABS()); |
---|
566 | return Complex.getInstance(new DoubleFloat(Math.log(abs.getValue())), phase); |
---|
567 | } else { |
---|
568 | SingleFloat re = SingleFloat.coerceToFloat(((Complex)obj).getRealPart()); |
---|
569 | SingleFloat im = SingleFloat.coerceToFloat(((Complex)obj).getImaginaryPart()); |
---|
570 | SingleFloat phase = |
---|
571 | new SingleFloat((float)Math.atan2(im.value, re.value)); // atan(y/x) |
---|
572 | SingleFloat abs = SingleFloat.coerceToFloat(obj.ABS()); |
---|
573 | return Complex.getInstance(new SingleFloat((float)Math.log(abs.value)), phase); |
---|
574 | } |
---|
575 | } |
---|
576 | } |
---|
577 | type_error(obj, Symbol.NUMBER); |
---|
578 | return NIL; |
---|
579 | } |
---|
580 | |
---|
581 | // ### expt base-number power-number => result |
---|
582 | public static final Primitive EXPT = |
---|
583 | new Primitive("expt", "base-number power-number") |
---|
584 | { |
---|
585 | @Override |
---|
586 | public LispObject execute(LispObject base, LispObject power) |
---|
587 | |
---|
588 | { |
---|
589 | if (power.zerop()) { |
---|
590 | if (power instanceof Fixnum) { |
---|
591 | if (base instanceof SingleFloat) |
---|
592 | return SingleFloat.ONE; |
---|
593 | if (base instanceof DoubleFloat) |
---|
594 | return DoubleFloat.ONE; |
---|
595 | if (base instanceof Complex) { |
---|
596 | if (((Complex)base).realpart instanceof SingleFloat) |
---|
597 | return Complex.getInstance(SingleFloat.ONE, |
---|
598 | SingleFloat.ZERO); |
---|
599 | if (((Complex)base).realpart instanceof DoubleFloat) |
---|
600 | return Complex.getInstance(DoubleFloat.ONE, |
---|
601 | DoubleFloat.ZERO); |
---|
602 | } |
---|
603 | return Fixnum.ONE; |
---|
604 | } |
---|
605 | if (power instanceof DoubleFloat) |
---|
606 | return DoubleFloat.ONE; |
---|
607 | if (base instanceof DoubleFloat) |
---|
608 | return DoubleFloat.ONE; |
---|
609 | return SingleFloat.ONE; |
---|
610 | } |
---|
611 | if (base.zerop()) |
---|
612 | return base; |
---|
613 | if (base.isEqualTo(1)) |
---|
614 | return base; |
---|
615 | |
---|
616 | if ((power instanceof Fixnum |
---|
617 | || power instanceof Bignum) |
---|
618 | && (base.rationalp() |
---|
619 | || (base instanceof Complex |
---|
620 | && ((Complex)base).realpart.rationalp()))) { |
---|
621 | // exact math version |
---|
622 | return intexp(base, power); |
---|
623 | } |
---|
624 | // for anything not a rational or complex rational, use |
---|
625 | // float approximation. |
---|
626 | boolean wantDoubleFloat = false; |
---|
627 | if (base instanceof DoubleFloat) |
---|
628 | wantDoubleFloat = true; |
---|
629 | else if (power instanceof DoubleFloat) |
---|
630 | wantDoubleFloat = true; |
---|
631 | else if (base instanceof Complex |
---|
632 | && (((Complex)base).getRealPart() instanceof DoubleFloat |
---|
633 | || ((Complex)base).getImaginaryPart() instanceof DoubleFloat)) |
---|
634 | wantDoubleFloat = true; |
---|
635 | else if (power instanceof Complex |
---|
636 | && (((Complex)power).getRealPart() instanceof DoubleFloat |
---|
637 | || ((Complex)power).getImaginaryPart() instanceof DoubleFloat)) |
---|
638 | wantDoubleFloat = true; |
---|
639 | |
---|
640 | if (wantDoubleFloat) { |
---|
641 | if (power instanceof Complex) |
---|
642 | power = ((Complex)power).coerceToDoubleFloat(); |
---|
643 | else |
---|
644 | power = DoubleFloat.coerceToFloat(power); |
---|
645 | |
---|
646 | if (base instanceof Complex) |
---|
647 | base = ((Complex)base).coerceToDoubleFloat(); |
---|
648 | else |
---|
649 | base = DoubleFloat.coerceToFloat(base); |
---|
650 | } |
---|
651 | |
---|
652 | |
---|
653 | |
---|
654 | if (base instanceof Complex || power instanceof Complex) |
---|
655 | return exp(power.multiplyBy(log(base))); |
---|
656 | final double x; // base |
---|
657 | final double y; // power |
---|
658 | if (base instanceof Fixnum) |
---|
659 | x = ((Fixnum)base).value; |
---|
660 | else if (base instanceof Bignum) |
---|
661 | x = ((Bignum)base).doubleValue(); |
---|
662 | else if (base instanceof Ratio) |
---|
663 | x = ((Ratio)base).doubleValue(); |
---|
664 | else if (base instanceof SingleFloat) |
---|
665 | x = ((SingleFloat)base).value; |
---|
666 | else if (base instanceof DoubleFloat) |
---|
667 | x = ((DoubleFloat)base).value; |
---|
668 | else |
---|
669 | return error(new LispError("EXPT: unsupported case: base is of type " + |
---|
670 | base.typeOf().princToString())); |
---|
671 | |
---|
672 | if (power instanceof Fixnum) |
---|
673 | y = ((Fixnum)power).value; |
---|
674 | else if (power instanceof Bignum) |
---|
675 | y = ((Bignum)power).doubleValue(); |
---|
676 | else if (power instanceof Ratio) |
---|
677 | y = ((Ratio)power).doubleValue(); |
---|
678 | else if (power instanceof SingleFloat) |
---|
679 | y = ((SingleFloat)power).value; |
---|
680 | else if (power instanceof DoubleFloat) |
---|
681 | y = ((DoubleFloat)power).value; |
---|
682 | else |
---|
683 | return error(new LispError("EXPT: unsupported case: power is of type " + |
---|
684 | power.typeOf().princToString())); |
---|
685 | double r = Math.pow(x, y); |
---|
686 | if (Double.isNaN(r)) { |
---|
687 | if (x < 0) { |
---|
688 | r = Math.pow(-x, y); |
---|
689 | double realPart = r * Math.cos(y * Math.PI); |
---|
690 | double imagPart = r * Math.sin(y * Math.PI); |
---|
691 | if (base instanceof DoubleFloat || power instanceof DoubleFloat) |
---|
692 | return Complex |
---|
693 | .getInstance(OverUnderFlowCheck(new DoubleFloat(realPart)), |
---|
694 | OverUnderFlowCheck(new DoubleFloat(imagPart))); |
---|
695 | else |
---|
696 | return Complex |
---|
697 | .getInstance(OverUnderFlowCheck(new SingleFloat((float)realPart)), |
---|
698 | OverUnderFlowCheck(new SingleFloat((float)imagPart))); |
---|
699 | } |
---|
700 | } |
---|
701 | if (base instanceof DoubleFloat || power instanceof DoubleFloat) |
---|
702 | return OverUnderFlowCheck(new DoubleFloat(r)); |
---|
703 | else |
---|
704 | return OverUnderFlowCheck(new SingleFloat((float)r)); |
---|
705 | } |
---|
706 | }; |
---|
707 | |
---|
708 | /** Checks number for over- or underflow values. |
---|
709 | * |
---|
710 | * @param number |
---|
711 | * @return number or signals an appropriate error |
---|
712 | */ |
---|
713 | final static LispObject OverUnderFlowCheck(LispObject number) |
---|
714 | |
---|
715 | { |
---|
716 | if (number instanceof Complex) { |
---|
717 | OverUnderFlowCheck(((Complex)number).realpart); |
---|
718 | OverUnderFlowCheck(((Complex)number).imagpart); |
---|
719 | return number; |
---|
720 | } |
---|
721 | |
---|
722 | if (TRAP_OVERFLOW) { |
---|
723 | if (number instanceof SingleFloat) |
---|
724 | if (Float.isInfinite(((SingleFloat)number).value)) |
---|
725 | return error(new FloatingPointOverflow(NIL)); |
---|
726 | if (number instanceof DoubleFloat) |
---|
727 | if (Double.isInfinite(((DoubleFloat)number).value)) |
---|
728 | return error(new FloatingPointOverflow(NIL)); |
---|
729 | } |
---|
730 | if (TRAP_UNDERFLOW) { |
---|
731 | if (number.zerop()) |
---|
732 | return error(new FloatingPointUnderflow(NIL)); |
---|
733 | } |
---|
734 | return number; |
---|
735 | } |
---|
736 | |
---|
737 | /** Checks number for over- or underflow values. |
---|
738 | * |
---|
739 | * @param number |
---|
740 | * @return number or signals an appropriate error |
---|
741 | */ |
---|
742 | final static float OverUnderFlowCheck(float number) |
---|
743 | |
---|
744 | { |
---|
745 | if (TRAP_OVERFLOW) { |
---|
746 | if (Float.isInfinite(number)) |
---|
747 | error(new FloatingPointOverflow(NIL)); |
---|
748 | } |
---|
749 | if (TRAP_UNDERFLOW) { |
---|
750 | if (number == 0) |
---|
751 | error(new FloatingPointUnderflow(NIL)); |
---|
752 | } |
---|
753 | return number; |
---|
754 | } |
---|
755 | |
---|
756 | /** Checks number for over- or underflow values. |
---|
757 | * |
---|
758 | * @param number |
---|
759 | * @return number or signals an appropriate error |
---|
760 | */ |
---|
761 | public final static double OverUnderFlowCheck(double number) |
---|
762 | |
---|
763 | { |
---|
764 | if (TRAP_OVERFLOW) { |
---|
765 | if (Double.isInfinite(number)) |
---|
766 | error(new FloatingPointOverflow(NIL)); |
---|
767 | } |
---|
768 | if (TRAP_UNDERFLOW) { |
---|
769 | if (number == 0) |
---|
770 | error(new FloatingPointUnderflow(NIL)); |
---|
771 | } |
---|
772 | return number; |
---|
773 | } |
---|
774 | // Adapted from SBCL. |
---|
775 | /** Return the exponent of base taken to the integer exponent power |
---|
776 | * |
---|
777 | * @param base A value of any type |
---|
778 | * @param power An integer (fixnum or bignum) value |
---|
779 | */ |
---|
780 | static final LispObject intexp(LispObject base, LispObject power) |
---|
781 | |
---|
782 | { |
---|
783 | if (power.isEqualTo(0)) |
---|
784 | return Fixnum.ONE; |
---|
785 | if (base.isEqualTo(1)) |
---|
786 | return base; |
---|
787 | if (base.isEqualTo(0)) |
---|
788 | return base; |
---|
789 | |
---|
790 | if (power.minusp()) { |
---|
791 | power = Fixnum.ZERO.subtract(power); |
---|
792 | return Fixnum.ONE.divideBy(intexp(base, power)); |
---|
793 | } |
---|
794 | if (base.eql(Fixnum.TWO)) |
---|
795 | return Fixnum.ONE.ash(power); |
---|
796 | |
---|
797 | LispObject nextn = power.ash(Fixnum.MINUS_ONE); |
---|
798 | LispObject total; |
---|
799 | if (power.oddp()) |
---|
800 | total = base; |
---|
801 | else |
---|
802 | total = Fixnum.ONE; |
---|
803 | while (true) { |
---|
804 | if (nextn.zerop()) |
---|
805 | return total; |
---|
806 | base = base.multiplyBy(base); |
---|
807 | |
---|
808 | if (nextn.oddp()) |
---|
809 | total = base.multiplyBy(total); |
---|
810 | nextn = nextn.ash(Fixnum.MINUS_ONE); |
---|
811 | } |
---|
812 | } |
---|
813 | } |
---|