1 | % -*- mode: latex; -*- |
---|
2 | % http://en.wikibooks.org/wiki/LaTeX/ |
---|
3 | \documentclass[10pt]{book} |
---|
4 | % also need to have cm-super installed for high quality rendering |
---|
5 | |
---|
6 | %\usepackage[LGR,T1]{fontenc} |
---|
7 | \usepackage[utf8]{inputenc} |
---|
8 | |
---|
9 | \usepackage{abcl} |
---|
10 | |
---|
11 | \usepackage{hyperref} % Put this one last, it redefines lots of internals |
---|
12 | |
---|
13 | \begin{document} |
---|
14 | \title{Armed Bear Common Lisp User Manual} |
---|
15 | \date{Version 1.9.3 DRAFT \\ |
---|
16 | \smallskip |
---|
17 | Unreleased} |
---|
18 | \author{Mark Evenson \and Erik H\"{u}lsmann \and Rudolf Schlatte \and |
---|
19 | Alessio Stalla \and Ville Voutilainen} |
---|
20 | |
---|
21 | \maketitle |
---|
22 | |
---|
23 | \tableofcontents |
---|
24 | |
---|
25 | %%Preface to the first edition, abcl-1.0 |
---|
26 | \subsection{Preface to the First Edition} |
---|
27 | \textsc{ABCL} 1.0 was released at the European Common Lisp Meeting |
---|
28 | in Amsterdam in 2011. |
---|
29 | |
---|
30 | %%Preface to the second edition, abcl-1.1 |
---|
31 | \subsection{Preface to the Second Edition} |
---|
32 | \textsc{ABCL} 1.1 now contains \textsc{(A)MOP}. We hope you enjoy! |
---|
33 | --The Mgmt. |
---|
34 | |
---|
35 | %%Preface to the Third edition, abcl-1.2 |
---|
36 | \subsection{Preface to the Third Edition} |
---|
37 | The implementation now contains a performant and conforming |
---|
38 | implementation of \textsc{(A)MOP} to the point of inclusion in |
---|
39 | \textsc{CLOSER-MOP}'s test suite. |
---|
40 | |
---|
41 | %%Preface to the Fourth edition, abcl-1.3. |
---|
42 | \subsection{Preface to the Fourth Edition} |
---|
43 | |
---|
44 | \textsc{ABCL} 1.3 now implements an optimized implementation of the |
---|
45 | \code{org.armedbear.lisp.LispStack} abstraction thanks to Dmitry |
---|
46 | Nadezhin which runs on ORCL \textsc{JVMs} from \textsc{Java 5} through |
---|
47 | \textsc{Java 8}. |
---|
48 | |
---|
49 | %%Preface to the Fifth edition, abcl-1.4 |
---|
50 | \subsection{Preface to the Fifth Edition} |
---|
51 | |
---|
52 | \textsc{ABCL} 1.4 consolidates eighteen months of production bug-fixes, |
---|
53 | and substantially improves the support for invoking external |
---|
54 | processes via \code{SYS:RUN-PROGRAM}. |
---|
55 | |
---|
56 | %%Preface to the Sixth edition, abcl-1.5 |
---|
57 | \subsection{Preface to the Sixth Edition} |
---|
58 | |
---|
59 | With the sixth major release of the implementation, we make the |
---|
60 | following explicit revision of our compatibility to the underlying |
---|
61 | \textsc{JVM}. Since we are an open source implementation, we insist |
---|
62 | on possible open access to the sources from with an \textsc{JDK} may |
---|
63 | both be built and run upon. This requirement is no longer met by Java |
---|
64 | 5, so henceforth with the release of \textsc{ABCL} 1.5, we will |
---|
65 | support \textsc{Java 6}, \textsc{Java 7} and \textsc{Java 8} runtimes. |
---|
66 | |
---|
67 | %%Preface to the Seventh edition, abcl-1.6 |
---|
68 | \subsection{Preface to the Seventh Edition} |
---|
69 | |
---|
70 | Long overdue, we turn our Java to 11. |
---|
71 | |
---|
72 | Reflecting the management's best estimates as to implementation most |
---|
73 | easily available to the potential \textsc{ABCL} 1.6 User, the Seventh |
---|
74 | release implementation works best with \textsc{Java 8} or \textsc{Java 11} |
---|
75 | runtimes. Since freely available implementations of jdk6 and jdk7 |
---|
76 | exist, we still strive to maintain compatibility with the Java 6 and |
---|
77 | Java 7 runtime environments but those environments are less tested. |
---|
78 | The User may need to use the facilities of the \textsc{ABCL-BUILD} contrib to |
---|
79 | recompile the implementation locally in more exotic runtimes (see |
---|
80 | Section~\ref{section:abcl-build} page~\pageref{section:abcl-build}). |
---|
81 | |
---|
82 | |
---|
83 | %%Preface to the Eighth edition, abcl-1.7 |
---|
84 | \subsection{Preface to the Eighth Edition} |
---|
85 | Since the implementation now runs comfortably on \textsc{openjdk6}, |
---|
86 | \textsc{openjdk7}, \textsc{openjdk8}, \textsc{openjdk11}, and |
---|
87 | \textsc{openjdk14}, we take advantage of the presence of the |
---|
88 | \code{java.nio} package introduced in \textsc{Java 5}. We have |
---|
89 | overhauled the implementation to use these abstractions for arrays |
---|
90 | specialized on commonly used unsigned-byte types, adding two |
---|
91 | additional keyword arguments useful in their construction to |
---|
92 | \code{cl:make-array}.\footnote{See \ref{section:make-array} on page |
---|
93 | \pageref{section:make-array}}. |
---|
94 | |
---|
95 | %%Preface to the Ninth edition, abcl-1.8.0 |
---|
96 | \subsection{Preface to the Ninth Edition} |
---|
97 | With the Ninth Edition of the implementation we now support building |
---|
98 | and running with \textsc{openjdk15}. This is intended as the last |
---|
99 | major release to support the \textsc{openjdk6}, \textsc{openjdk7}, and |
---|
100 | \textsc{openjdk8} platforms. |
---|
101 | |
---|
102 | The implementation of the \code{EXT:JAR-PATHNAME} and |
---|
103 | \code{EXT:URL-PATHNAME} sub-types of \code{cl:PATHNAME} has been fixed |
---|
104 | to the point that arbitrary references to \textsc{ZIP} archives within |
---|
105 | archives now work for most read-only operations (\code{CL:PROBE-FILE}, |
---|
106 | \code{CL:TRUENAME}, \code{CL:OPEN}, \code{CL:LOAD}, |
---|
107 | \code{CL:FILE-WRITE-DATE}, \code{CL:DIRECTORY}, and |
---|
108 | \code{CL:MERGE-PATHNAMES}). The previous versions of the |
---|
109 | implementation relied on the ability for \code{java.net.URL} to open |
---|
110 | streams of an archive within an archive, behavior that was silently |
---|
111 | dropped after Java 5, and consequently hasn't worked on common |
---|
112 | platforms supported by the Bear in a long time. This restores the |
---|
113 | feasibility of accessing fasls from within jar files \footnote{Examine |
---|
114 | the ASDF-JAR contrib in section \ref{section:asdf-jar} on page |
---|
115 | \pageref{section:asdf-jar} for a recipe for packaging and accessing |
---|
116 | such artifacts.}. |
---|
117 | |
---|
118 | %%Preface to the Tenth edition, abcl-1.9.0 |
---|
119 | \subsection{Preface to the Tenth Edition} |
---|
120 | |
---|
121 | For the Tenth edition, we have explicitly tested the stable, Long Term |
---|
122 | Support (``LTS'') versions of the \textsc{OpenJDK}, namely \textsc{openjdk8}, |
---|
123 | \textsc{openjdk11}, and \textsc{openjdk17}. We intend to drop one or |
---|
124 | more of these platforms for the next edition in order to more |
---|
125 | completely overhaul the implementations use of compare and swap on |
---|
126 | memory originally allocated outside the hosting \textsc{JVM}. As such, the |
---|
127 | Tenth edition is built released with openjdk8 but should run best on |
---|
128 | \textsc{openjdk17}. |
---|
129 | |
---|
130 | \chapter{Introduction} |
---|
131 | |
---|
132 | Armed Bear Common Lisp (\textsc{ABCL}) is an implementation of |
---|
133 | \textsc{Common Lisp} that runs on the Java Virtual Machine |
---|
134 | (\textsc{JVM}). \textsc{ABCL} compiles \textsc{Common Lisp} to |
---|
135 | \textsc{Java} byte-code\footnote{The class files produced by the |
---|
136 | compiler have a byte-code version of ``49.0''.}, with an efficiency |
---|
137 | that varies upon the hosting JVM implementation. \textsc{ABCL} |
---|
138 | supports building and running on the \textsc{openjdk8}, |
---|
139 | \textsc{openjdk11}, and \textsc{openjdk17} \textsc{JVM} |
---|
140 | implementations\footnote{The codebase runs and compiles on every |
---|
141 | historical openjdk from \textsc{openjdk6} through \textsc{openjdk8}, |
---|
142 | does *not* run on either\textsc{openjdk9} or either\textsc{openjdk10}, |
---|
143 | but then runs on every openjdk released as of May 2022 with minor |
---|
144 | adjustments}. As of May 2022, we are using the Adoptium community |
---|
145 | \cite{adoptium} binary releases which provides perhaps the least |
---|
146 | encumbered installation of unencumbered openjdk implementations. |
---|
147 | |
---|
148 | Armed Bear provides the following integration methods for interfacing |
---|
149 | with Java code and libraries: |
---|
150 | \begin{itemize} |
---|
151 | \item Lisp code can create Java objects and call their methods (see |
---|
152 | Section~\ref{section:lisp-java}, page~\pageref{section:lisp-java}). |
---|
153 | \item Java code can call Lisp functions and generic functions, either |
---|
154 | directly (Section~\ref{section:calling-lisp-from-java}, |
---|
155 | page~\pageref{section:calling-lisp-from-java}) or via \texttt{JSR-223} |
---|
156 | (Section~\ref{section:java-scripting-api}, |
---|
157 | page~\pageref{section:java-scripting-api}). |
---|
158 | \item \code{jinterface-implementation} creates Lisp-side implementations |
---|
159 | of Java interfaces that can be used as listeners for Swing classes and |
---|
160 | similar. |
---|
161 | \item \code{java:jnew-runtime-class} can inject fully synthetic Java |
---|
162 | classes--and their objects-- into the current JVM process whose |
---|
163 | behavior is specified via closures expressed in \textsc{Common |
---|
164 | Lisp}. \footnote{Parts of the current implementation are not fully |
---|
165 | finished, so the status of some interfaces here should be treated |
---|
166 | with skepticism if you run into problems.} |
---|
167 | |
---|
168 | \end{itemize} |
---|
169 | \textsc{ABCL} is supported by the Lisp library manager |
---|
170 | \textsc{Quicklisp}\footnote{\url{http://quicklisp.org/}} and can run many of the |
---|
171 | programs and libraries provided therein out-of-the-box. |
---|
172 | |
---|
173 | \section{Conformance} |
---|
174 | \label{section:conformance} |
---|
175 | |
---|
176 | \subsection{ANSI Common Lisp} |
---|
177 | \textsc{ABCL} is currently a (non)-conforming \textsc{ANSI} Common Lisp |
---|
178 | implementation due to the following known issues: |
---|
179 | |
---|
180 | \begin{itemize} |
---|
181 | \item The generic function signatures of the \code{CL:DOCUMENTATION} |
---|
182 | symbol do not match the specification. |
---|
183 | \item The \code{CL:TIME} form does not return a proper |
---|
184 | \code{CL:VALUES} environment to its caller. |
---|
185 | \item When merging pathnames and the defaults point to a |
---|
186 | \code{EXT:JAR-PATHNAME}, we set the \code{DEVICE} of the result to |
---|
187 | \code{:UNSPECIFIC} if the pathname to be be merged does not contain |
---|
188 | a specified \code{DEVICE}, does not contain a specified \code{HOST}, |
---|
189 | does contain a relative \code{DIRECTORY}, and we are not running on |
---|
190 | a \textsc{MSFT} Windows platform.\footnote{The intent of this rather |
---|
191 | arcane sounding deviation from conformance is so that the result of |
---|
192 | a merge won't fill in a \code{DEVICE} with the wrong "default device |
---|
193 | for the host" in the sense of the fourth paragraph in the |
---|
194 | \textsc{CLHS} description of MERGE-PATHNAMES (see in \cite{CLHS} the |
---|
195 | paragraph beginning "If the PATHNAME explicitly specifies a host and |
---|
196 | not a deviceâŠ"). A future version of the implementation may return |
---|
197 | to conformance by using the \code{HOST} value to reflect the type |
---|
198 | explicitly. See \ref{section:jar-pathname} on page |
---|
199 | \pageref{section:jar-pathname} for further information.} |
---|
200 | |
---|
201 | \end{itemize} |
---|
202 | |
---|
203 | Somewhat confusingly, this statement of non-conformance in the |
---|
204 | accompanying user documentation fulfills the requirements that |
---|
205 | \textsc{ABCL} is a conforming ANSI Common Lisp implementation according |
---|
206 | to the Common Lisp Hyper-Spec~\cite{CLHS}. Clarifications to this point |
---|
207 | are solicited. |
---|
208 | |
---|
209 | \textsc{ABCL} aims to be be a fully conforming \textsc{ANSI} Common |
---|
210 | Lisp implementation. Any other behavior should be reported as a bug. |
---|
211 | |
---|
212 | \subsection{Contemporary Common Lisp} |
---|
213 | In addition to \textsc{ANSI} conformance, \textsc{ABCL} strives to implement |
---|
214 | features expected of a contemporary \textsc{Common Lisp}, i.e. a Lisp of the |
---|
215 | post-2005 Renaissance. |
---|
216 | |
---|
217 | The following known problems detract from \textsc{ABCL} being a proper |
---|
218 | contemporary Common Lisp. |
---|
219 | \begin{itemize} |
---|
220 | \item An incomplete implementation of interactive debugging |
---|
221 | mechanisms, namely a no-op version of \code{STEP}\footnote{Somewhat |
---|
222 | surprisingly allowed by \textsc{ANSI}}, the inability to inspect |
---|
223 | local variables in a given call frame, and the inability to resume a |
---|
224 | halted computation at an arbitrarily selected call frame. |
---|
225 | \item Incomplete streams abstraction, in that \textsc{ABCL} needs a |
---|
226 | suitable abstraction between \textsc{ANSI} and \textsc{Gray streams} |
---|
227 | with a runtime switch for the beyond conforming |
---|
228 | behavior\footnote{The streams could be optimized to the |
---|
229 | \textsc{JVM} NIO \cite{nio} abstractions at great profit for |
---|
230 | binary byte-level manipulations.}. |
---|
231 | \item Incomplete documentation: source code is missing doc-strings from |
---|
232 | all exported symbols from the \code{EXTENSIONS}, \code{SYSTEM}, |
---|
233 | \code{JAVA}, \code{MOP}, and \code{THREADS} packages. This user |
---|
234 | manual is currently in draft status. |
---|
235 | \end{itemize} |
---|
236 | |
---|
237 | |
---|
238 | |
---|
239 | \section{License} |
---|
240 | |
---|
241 | \textsc{ABCL} is licensed under the terms of the \textsc{GPL} v2 of |
---|
242 | June 1991 with an added ``classpath-exception'' clause (see the file |
---|
243 | \texttt{COPYING} in the source distribution\footnote{See |
---|
244 | \url{http://abcl.org/svn/trunk/tags/1.9.2/COPYING}} for the license, |
---|
245 | term 13 in the same file for the classpath exception). This license |
---|
246 | broadly means that you must distribute the sources to \textsc{ABCL}, |
---|
247 | including any changes you make, together with a program that includes |
---|
248 | \textsc{ABCL}, but that you are not required to distribute the sources |
---|
249 | of the whole program. Submitting your changes upstream to the \textsc{ABCL} |
---|
250 | development team is actively encouraged and very much appreciated, of |
---|
251 | course. |
---|
252 | |
---|
253 | \section{Contributors} |
---|
254 | |
---|
255 | \begin{itemize} |
---|
256 | \item Dmitry Nadezhin |
---|
257 | \item Philipp Marek \texttt{Thanks for the mark-up, and review of the Manual} |
---|
258 | \item Douglas Miles \texttt{Thanks for the whacky IKVM stuff and keeping the flame alive |
---|
259 | in the dark years.} |
---|
260 | \item Alan Ruttenberg \texttt{Thanks for JSS.} |
---|
261 | \item Olof-Joachim Frahm |
---|
262 | \item Jonathan Cunningham |
---|
263 | \item Uthar |
---|
264 | \item Alejandro Zamora Fonseca \texttt{Thanks for ABCL-STEPPER, and all the patches.} |
---|
265 | \item phoe |
---|
266 | \item jackdaniel |
---|
267 | \item Robert Munyer |
---|
268 | \item Eric Timmons (daewok) |
---|
269 | \item contrapunctus |
---|
270 | \item Scott Burson |
---|
271 | \item Samuel Hunter |
---|
272 | \item Phil Eaton |
---|
273 | \item jpellegrini |
---|
274 | |
---|
275 | |
---|
276 | \item Andr\'as Simon (piso) |
---|
277 | \item and of course \emph{Peter Graves} |
---|
278 | \end{itemize} |
---|
279 | |
---|
280 | |
---|
281 | \chapter{Running ABCL} |
---|
282 | |
---|
283 | |
---|
284 | \textsc{ABCL} is packaged as a single jar file usually named either |
---|
285 | \texttt{abcl.jar} or possibly something like \texttt{abcl-1.9.2.jar} if |
---|
286 | using a versioned package on the local file-system from your system |
---|
287 | vendor. This jar file can be executed from the command line to obtain a |
---|
288 | \textsc{REPL}\footnote{Read-Eval Print Loop, a Lisp command-line}, viz: |
---|
289 | |
---|
290 | \index{REPL} |
---|
291 | |
---|
292 | \begin{listing-shell} |
---|
293 | cmd$ java -jar abcl.jar |
---|
294 | \end{listing-shell} %$ unconfuse Emacs syntax highlighting |
---|
295 | |
---|
296 | \emph{N.b.} for the proceeding command to work, the \texttt{java} |
---|
297 | executable needs to be in your path. |
---|
298 | |
---|
299 | To facilitate the use of ABCL in tool chains such as SLIME~\cite{slime} |
---|
300 | (the Superior Lisp Interaction Mode for Emacs), we provide both a Bourne |
---|
301 | shell script and a \textsc{DOS} batch file. If you or your |
---|
302 | administrator adjusted the path properly, ABCL may be executed simply |
---|
303 | as: |
---|
304 | |
---|
305 | \begin{listing-shell} |
---|
306 | cmd$ abcl |
---|
307 | \end{listing-shell}%$ |
---|
308 | |
---|
309 | Probably the easiest way of setting up an editing environment using the |
---|
310 | \textsc{Emacs} editor is to use \textsc{Quicklisp} and follow the instructions at |
---|
311 | \url{http://www.quicklisp.org/beta/#slime}. |
---|
312 | |
---|
313 | \section{Command Line Options} |
---|
314 | |
---|
315 | ABCL recognizes the following command line options: |
---|
316 | |
---|
317 | \index{Command Line Options} |
---|
318 | |
---|
319 | \begin{description} |
---|
320 | % FIXME move this fuggliness to our macros. sigh. |
---|
321 | \item \code{--help} \\ |
---|
322 | displays a help message. |
---|
323 | \item \code{--noinform} \\ |
---|
324 | Suppresses the printing of startup information and banner. |
---|
325 | \item \code{--noinit} \\ |
---|
326 | suppresses the loading of the \verb+~/.abclrc+ startup file. |
---|
327 | \item \code{--nosystem} \\ |
---|
328 | suppresses loading the \texttt{system.lisp} customization file. |
---|
329 | \item \code{--eval FORM} \\ |
---|
330 | evaluates \textsc{form} before initializing the REPL. |
---|
331 | \item \code{--load FILE} \\ |
---|
332 | loads the file \textsc{file} before initializing the REPL. |
---|
333 | \item \code{--load-system-file FILE} \\ loads the system |
---|
334 | file\footnote{System files have a distinguished PATHNAME resolution |
---|
335 | mechanism based on the location of the \texttt{system.lisp} source |
---|
336 | unit} FILE before initializing the REPL. |
---|
337 | \item \code{--batch} \\evaluates forms specified by arguments and in |
---|
338 | the initialization file \verb+~/.abclrc+, and then exits without |
---|
339 | starting a \textsc{REPL}. |
---|
340 | \end{description} |
---|
341 | |
---|
342 | All of the command line arguments following the occurrence of \verb+--+ |
---|
343 | are passed unprocessed into a list of strings accessible via the |
---|
344 | variable \code{EXT:*COMMAND-LINE-ARGUMENT-LIST*} from within ABCL. |
---|
345 | |
---|
346 | \section{Initialization} |
---|
347 | |
---|
348 | If the \textsc{ABCL} process is started without the |
---|
349 | \code{--noinit} flag, it attempts to load a file |
---|
350 | named \code{.abclrc} in the user's home directory and then interpret |
---|
351 | its contents. |
---|
352 | |
---|
353 | The user's home directory is determined by the value of the JVM system |
---|
354 | property \texttt{user.home}. This value may or may not correspond |
---|
355 | to the value of the \texttt{HOME} system environment variable, at the |
---|
356 | discretion of the JVM implementation that \textsc{ABCL} finds itself |
---|
357 | hosted upon. |
---|
358 | |
---|
359 | \chapter{Interaction with the Hosting JVM} |
---|
360 | |
---|
361 | % Plan of Attack |
---|
362 | % |
---|
363 | % describe calling Java from Lisp, and calling Lisp from Java, |
---|
364 | % probably in two separate sections. Presumably, we can partition our |
---|
365 | % audience into those who are more comfortable with Java, and those |
---|
366 | % that are more comfortable with Lisp |
---|
367 | |
---|
368 | The Armed Bear Common Lisp implementation is hosted on a Java Virtual |
---|
369 | Machine. This chapter describes the mechanisms by which the |
---|
370 | implementation interacts with that hosting mechanism. |
---|
371 | |
---|
372 | \section{Lisp to Java} |
---|
373 | \label{section:lisp-java} |
---|
374 | |
---|
375 | \textsc{ABCL} offers a number of mechanisms to interact with Java from its |
---|
376 | Lisp environment. It allows calling both instance and static methods |
---|
377 | of Java objects, manipulation of instance and static fields on Java |
---|
378 | objects, and construction of new Java objects. |
---|
379 | |
---|
380 | When calling Java routines, some values will automatically be |
---|
381 | converted by the FFI\footnote{Foreign Function Interface is the term |
---|
382 | of art for the part of a \textsc{Lisp} implementation which implements |
---|
383 | calling code written in other languages, typically normalized to the |
---|
384 | local C compiler calling conventions.} from \textsc{Lisp} values to Java |
---|
385 | values. These conversions typically apply to strings, integers and |
---|
386 | floats. Other values need to be converted to their \textsc{Java} equivalents by |
---|
387 | the programmer before calling the Java object method. Java values |
---|
388 | returned to \textsc{Lisp} are also generally converted back to their Lisp |
---|
389 | counterparts. Some operators make an exception to this rule and do not |
---|
390 | perform any conversion; those are the ``raw'' counterparts of certain |
---|
391 | FFI functions and are recognizable by their name ending with |
---|
392 | \code{-RAW}. |
---|
393 | |
---|
394 | \subsection{Low-level Java API} |
---|
395 | |
---|
396 | This subsection covers the low-level API available after evaluating |
---|
397 | \code{(require :java)}. A higher level \textsc{Java} API, developed by Alan |
---|
398 | Ruttenberg, is available in the \code{contrib/jss} directory and described |
---|
399 | later in this document, see Section~\ref{section:jss} on page |
---|
400 | \pageref{section:jss}. |
---|
401 | |
---|
402 | \subsubsection{Calling Java Object Methods} |
---|
403 | |
---|
404 | There are two ways to call a Java object method in the low-level (basic) API: |
---|
405 | |
---|
406 | \begin{itemize} |
---|
407 | \item Call a specific method reference (which was previously acquired) |
---|
408 | \item Dynamic dispatch using the method name and the call-specific |
---|
409 | arguments provided by finding the best match (see |
---|
410 | Section~\ref{section:param-matching-for-ffi}). |
---|
411 | \end{itemize} |
---|
412 | |
---|
413 | \code{JAVA:JMETHOD} is used to acquire a specific method reference. The |
---|
414 | function takes two or more arguments. The first is a Java class |
---|
415 | designator (a \code{JAVA:JAVA-CLASS} object returned by |
---|
416 | \code{JAVA:JCLASS} or a string naming a Java class). The second is a |
---|
417 | string naming the method. |
---|
418 | |
---|
419 | Any arguments beyond the first two should be strings naming Java |
---|
420 | classes, with one exception as listed in the next paragraph. These |
---|
421 | classes specify the types of the arguments for the method. |
---|
422 | |
---|
423 | When \code{JAVA:JMETHOD} is called with three parameters and the last |
---|
424 | parameter is an integer, the first method by that name and matching |
---|
425 | number of parameters is returned. |
---|
426 | |
---|
427 | Once a method reference has been acquired, it can be invoked using |
---|
428 | \code{JAVA:JCALL}, which takes the method as the first argument. The |
---|
429 | second argument is the object instance to call the method on, or |
---|
430 | \code{NIL} in case of a static method. Any remaining parameters are |
---|
431 | used as the remaining arguments for the call. |
---|
432 | |
---|
433 | \subsubsection{Calling Java object methods: dynamic dispatch} |
---|
434 | |
---|
435 | The second way of calling Java object methods is by using dynamic dispatch. |
---|
436 | In this case \code{JAVA:JCALL} is used directly without acquiring a method |
---|
437 | reference first. In this case, the first argument provided to \code{JAVA:JCALL} |
---|
438 | is a string naming the method to be called. The second argument is the instance |
---|
439 | on which the method should be called and any further arguments are used to |
---|
440 | select the best matching method and dispatch the call. |
---|
441 | |
---|
442 | \subsubsection{Dynamic dispatch: Caveats} |
---|
443 | |
---|
444 | Dynamic dispatch is performed by using the Java reflection |
---|
445 | API\footnote{The Java reflection API is found in the |
---|
446 | \code{java.lang.reflect} package}. Generally the dispatch works |
---|
447 | fine, but there are corner cases where the API does not correctly |
---|
448 | reflect all the details involved in calling a Java method. An example |
---|
449 | is the following Java code: |
---|
450 | |
---|
451 | \begin{listing-java} |
---|
452 | ZipFile jar = new ZipFile("/path/to/some.jar"); |
---|
453 | Object els = jar.entries(); |
---|
454 | Method method = els.getClass().getMethod("hasMoreElements"); |
---|
455 | method.invoke(els); |
---|
456 | \end{listing-java} |
---|
457 | |
---|
458 | Even though the method \code{hasMoreElements()} is public in |
---|
459 | \code{Enumeration}, the above code fails with |
---|
460 | |
---|
461 | \begin{listing-java} |
---|
462 | java.lang.IllegalAccessException: Class ... can |
---|
463 | not access a member of class java.util.zip.ZipFile\$2 with modifiers |
---|
464 | "public" |
---|
465 | at sun.reflect.Reflection.ensureMemberAccess(Reflection.java:65) |
---|
466 | at java.lang.reflect.Method.invoke(Method.java:583) |
---|
467 | at ... |
---|
468 | \end{listing-java} |
---|
469 | |
---|
470 | This is because the method has been overridden by a non-public class and |
---|
471 | the reflection API, unlike \texttt{javac}, is not able to handle such a case. |
---|
472 | |
---|
473 | While code like that is uncommon in Java, it is typical of ABCL's FFI |
---|
474 | calls. The code above corresponds to the following Lisp code: |
---|
475 | |
---|
476 | \begin{listing-lisp} |
---|
477 | (let ((jar (jnew "java.util.zip.ZipFile" "/path/to/some.jar"))) |
---|
478 | (let ((els (jcall "entries" jar))) |
---|
479 | (jcall "hasMoreElements" els))) |
---|
480 | \end{listing-lisp} |
---|
481 | |
---|
482 | except that the dynamic dispatch part is not shown. |
---|
483 | |
---|
484 | To avoid such pitfalls, all Java objects in \textsc{ABCL} carry an extra |
---|
485 | field representing the ``intended class'' of the object. That class is |
---|
486 | used first by \code{JAVA:JCALL} and similar to resolve methods; the |
---|
487 | actual class of the object is only tried if the method is not found in |
---|
488 | the intended class. Of course, the intended class is always a |
---|
489 | super-class of the actual class -- in the worst case, they coincide. The |
---|
490 | intended class is deduced by the return type of the method that |
---|
491 | originally returned the Java object; in the case above, the intended |
---|
492 | class of \code{ELS} is \code{java.util.Enumeration} because that is the |
---|
493 | return type of the \code{entries} method. |
---|
494 | |
---|
495 | While this strategy is generally effective, there are cases where the |
---|
496 | intended class becomes too broad to be useful. The typical example |
---|
497 | is the extraction of an element from a collection, since methods in |
---|
498 | the collection API erase all types to \code{Object}. The user can |
---|
499 | always force a more specific intended class by using the \code{JAVA:JCOERCE} |
---|
500 | operator. |
---|
501 | |
---|
502 | % \begin{itemize} |
---|
503 | % \item Java values are accessible as objects of type JAVA:JAVA-OBJECT. |
---|
504 | % \item The Java FFI presents a Lisp package (JAVA) with many useful |
---|
505 | % symbols for manipulating the artifacts of expectation on the JVM, |
---|
506 | % including creation of new objects \ref{JAVA:JNEW}, \ref{JAVA:JMETHOD}), the |
---|
507 | % introspection of values \ref{JAVA:JFIELD}, the execution of methods |
---|
508 | % (\ref{JAVA:JCALL}, \ref{JAVA:JCALL-RAW}, \ref{JAVA:JSTATIC}) |
---|
509 | % \item The JSS package (\ref{JSS}) in contrib introduces a convenient macro |
---|
510 | % syntax \ref{JSS:SHARPSIGN_DOUBLEQUOTE_MACRO} for accessing Java |
---|
511 | % methods, and additional convenience functions. |
---|
512 | % \item Java classes and libraries may be dynamically added to the |
---|
513 | % classpath at runtime (JAVA:ADD-TO-CLASSPATH). |
---|
514 | % \end{itemize} |
---|
515 | |
---|
516 | \subsubsection{Calling Java class static methods} |
---|
517 | |
---|
518 | Like non-static methods, references to static methods can be acquired by |
---|
519 | using the \code{JAVA:JMETHOD} primitive. Static methods are called with |
---|
520 | \code{JAVA:JSTATIC} instead of \code{JAVA:JCALL}. |
---|
521 | |
---|
522 | Like \code{JAVA:JCALL}, \code{JAVA:JSTATIC} supports dynamic dispatch by |
---|
523 | passing the name of the method as a string instead of passing a method reference. |
---|
524 | The parameters should be values to pass in the function call instead of |
---|
525 | a specification of classes for each parameter. |
---|
526 | |
---|
527 | \subsubsection{Parameter matching for FFI dynamic dispatch} |
---|
528 | \label{section:param-matching-for-ffi} |
---|
529 | |
---|
530 | The algorithm used to resolve the best matching method given the name |
---|
531 | and the arguments' types is the same as described in the Java Language |
---|
532 | Specification. Any deviation should be reported as a bug. |
---|
533 | |
---|
534 | % ###TODO reference to correct JLS section |
---|
535 | |
---|
536 | \subsubsection{Instantiating Java objects} |
---|
537 | |
---|
538 | \textsc{Java} objects can be instantiated (created) from \textsc{Lisp} by calling |
---|
539 | a constructor from the class of the object to be created. The |
---|
540 | \code{JAVA:JCONSTRUCTOR} primitive is used to acquire a constructor |
---|
541 | reference. Its arguments specify the types of arguments of the constructor |
---|
542 | method the same way as with \code{JAVA:JMETHOD}. |
---|
543 | |
---|
544 | The obtained constructor is passed as an argument to \code{JAVA:JNEW}, |
---|
545 | together with any arguments. \code{JAVA:JNEW} can also be invoked with |
---|
546 | a string naming the class as its first argument. |
---|
547 | |
---|
548 | \subsubsection{Accessing Java object and class fields} |
---|
549 | |
---|
550 | Fields in Java objects can be accessed using the getter and setter |
---|
551 | functions \code{JAVA:JFIELD} and \code{(SETF JAVA:JFIELD)}. Static |
---|
552 | (class) fields are accessed the same way, but with a class object or |
---|
553 | string naming a class as first argument. |
---|
554 | |
---|
555 | Like \code{JAVA:JCALL} and friends, values returned from these accessors carry |
---|
556 | an intended class around, and values which can be converted to Lisp values will |
---|
557 | be converted. |
---|
558 | |
---|
559 | \section{Java to Lisp} |
---|
560 | |
---|
561 | This section describes the various ways that one interacts with \textsc{Lisp} |
---|
562 | from \textsc{Java} code. In order to access the \textsc{Lisp} world from \textsc{Java}, one needs |
---|
563 | to be aware of a few things, the most important ones being listed below: |
---|
564 | |
---|
565 | \begin{itemize} |
---|
566 | \item All Lisp values are descendants of \code{LispObject}. |
---|
567 | \item Lisp symbols are accessible either via static members of the |
---|
568 | \code{Symbol} class, or by dynamically introspecting a \code{Package} |
---|
569 | object. |
---|
570 | \item The Lisp dynamic environment may be saved via |
---|
571 | \code{LispThread.bindSpecial(Binding)} and restored via |
---|
572 | \code{LispThread.resetSpecialBindings(Mark)}. |
---|
573 | \item Functions can be executed by invoking \code{LispObject.execute(args |
---|
574 | [...])} |
---|
575 | \end{itemize} |
---|
576 | |
---|
577 | \subsection{Calling Lisp from Java} |
---|
578 | \label{section:calling-lisp-from-java} |
---|
579 | |
---|
580 | Note: the entire \textsc{ABCL} \textsc{Lisp} system implementation in |
---|
581 | \textsc{Java} is resident in the \texttt{org.armedbear.lisp} package, |
---|
582 | but the following code snippets do not show the relevant import |
---|
583 | statements in the interest of brevity. An example of the import |
---|
584 | statement would be |
---|
585 | \begin{listing-java} |
---|
586 | import org.armedbear.lisp.*; |
---|
587 | \end{listing-java} |
---|
588 | to potentially import all the JVM symbol from the \code{org.armedbear.lisp} |
---|
589 | namespace. |
---|
590 | |
---|
591 | There can only ever be a single Lisp interpreter per \textsc{JVM} instance. A |
---|
592 | reference to this interpreter is obtained by calling the static method |
---|
593 | \code{Interpreter.createInstance()}. |
---|
594 | |
---|
595 | \begin{listing-java} |
---|
596 | Interpreter interpreter = Interpreter.createInstance(); |
---|
597 | \end{listing-java} |
---|
598 | |
---|
599 | If this method has already been invoked in the lifetime of the current |
---|
600 | Java process it will return \texttt{null}, so if you are writing \textsc{Java} |
---|
601 | whose life-cycle is a bit out of your control (like in a \textsc{Java} servlet), |
---|
602 | a safer invocation pattern might be: |
---|
603 | |
---|
604 | \begin{listing-java} |
---|
605 | Interpreter interpreter = Interpreter.getInstance(); |
---|
606 | if (interpreter == null) { |
---|
607 | interpreter = Interpreter.createInstance(); |
---|
608 | } |
---|
609 | \end{listing-java} |
---|
610 | |
---|
611 | |
---|
612 | The Lisp \code{eval} primitive may simply be passed strings for evaluation: |
---|
613 | |
---|
614 | \begin{listing-java} |
---|
615 | String line = "(load \"file.lisp\")"; |
---|
616 | LispObject result = interpreter.eval(line); |
---|
617 | \end{listing-java} |
---|
618 | |
---|
619 | Notice that all possible return values from an arbitrary Lisp |
---|
620 | computation are collapsed into a single return value. Doing useful |
---|
621 | further computation on the \code{LispObject} depends on knowing what the |
---|
622 | result of the computation might be. This usually involves some amount |
---|
623 | of \code{instanceof} introspection, and forms a whole topic to itself |
---|
624 | (see Section~\ref{topic:Introspecting a LispObject}, |
---|
625 | page~\pageref{topic:Introspecting a LispObject}). |
---|
626 | |
---|
627 | Using \code{eval} involves the Lisp interpreter. Lisp functions may |
---|
628 | also be directly invoked by Java method calls as follows. One simply |
---|
629 | locates the package containing the symbol, obtains a reference to the |
---|
630 | symbol, and then invokes the \code{execute()} method with the desired |
---|
631 | parameters. |
---|
632 | |
---|
633 | \begin{listing-java} |
---|
634 | interpreter.eval("(defun foo (msg)" + |
---|
635 | "(format nil \"You told me '~A'~%\" msg))"); |
---|
636 | Package pkg = Packages.findPackage("CL-USER"); |
---|
637 | Symbol foo = pkg.findAccessibleSymbol("FOO"); |
---|
638 | Function fooFunction = (Function)foo.getSymbolFunction(); |
---|
639 | JavaObject parameter = new JavaObject("Lisp is fun!"); |
---|
640 | LispObject result = fooFunction.execute(parameter); |
---|
641 | // How to get the "naked string value"? |
---|
642 | System.out.println("The result was " + result.writeToString()); |
---|
643 | \end{listing-java} |
---|
644 | |
---|
645 | If one is calling a function in the CL package, the syntax can become |
---|
646 | considerably simpler. If we can locate the instance of definition in |
---|
647 | the ABCL Java source, we can invoke the symbol directly. For instance, |
---|
648 | to tell if a \code{LispObject} is (Lisp) \texttt{NIL}, we can invoke the |
---|
649 | CL function \code{NULL} in the following way: |
---|
650 | |
---|
651 | |
---|
652 | \begin{listing-java} |
---|
653 | boolean nullp(LispObject object) { |
---|
654 | LispObject result = Primitives.NULL.execute(object); |
---|
655 | if (result == NIL) { |
---|
656 | return false; |
---|
657 | } |
---|
658 | return true; |
---|
659 | } |
---|
660 | \end{listing-java} |
---|
661 | |
---|
662 | Note, that the symbol \code{nil} is explicitly named in the |
---|
663 | \textsc{Java} namespace as \code{Symbol.NIL} but is always present in |
---|
664 | the local namespace in its unadorned form for the convenience of the |
---|
665 | User. |
---|
666 | |
---|
667 | \subsubsection{Multiple Values} |
---|
668 | |
---|
669 | After a call to a function that returns Lisp multiple values, the |
---|
670 | values are associated with the executing \code{LispThread} until the |
---|
671 | next call into Lisp. One may access the values object as a list of |
---|
672 | \code{LispObject} instances via a call to \code{getValues()} on that |
---|
673 | thread reference |
---|
674 | as evidenced by the following code: |
---|
675 | |
---|
676 | \begin{listing-java} |
---|
677 | |
---|
678 | org.armedbear.lisp.Package cl = Packages.findPackage("CL"); |
---|
679 | Symbol valuesSymbol = cl.findAccessibleSymbol("VALUES"); |
---|
680 | LispObject[] valuesArgs = { |
---|
681 | LispInteger.getInstance(1), LispInteger.getInstance(2) |
---|
682 | }; |
---|
683 | // equivalent to ``(values 1 2)'' |
---|
684 | LispObject result = valuesSymbol.execute(valuesArgs); |
---|
685 | LispObject[] values = LispThread.currentThread().getValues(); |
---|
686 | for (LispObject value: values) { |
---|
687 | System.out.println("value ==> " + value.printObject()); |
---|
688 | } |
---|
689 | \end{listing-java} |
---|
690 | |
---|
691 | \subsubsection{Introspecting a LispObject} |
---|
692 | \label{topic:Introspecting a LispObject} |
---|
693 | |
---|
694 | We present various patterns for introspecting an arbitrary |
---|
695 | \code{LispObject} which can hold the result of every Lisp evaluation |
---|
696 | into semantics that Java can meaningfully deal with. |
---|
697 | |
---|
698 | \paragraph{LispObject as \code{boolean}} |
---|
699 | |
---|
700 | If the \code{LispObject} is to be interpreted as a generalized boolean |
---|
701 | value, one can use \code{getBooleanValue()} to convert to Java: |
---|
702 | |
---|
703 | \begin{listing-java} |
---|
704 | LispObject object = Symbol.NIL; |
---|
705 | boolean javaValue = object.getBooleanValue(); |
---|
706 | \end{listing-java} |
---|
707 | |
---|
708 | Since in Lisp any value other than \code{NIL} means "true", Java |
---|
709 | equality can also be used, which is a bit easier to type and better in |
---|
710 | terms of information it conveys to the compiler: |
---|
711 | |
---|
712 | \begin{listing-java} |
---|
713 | boolean javaValue = (object != Symbol.NIL); |
---|
714 | \end{listing-java} |
---|
715 | |
---|
716 | \paragraph{LispObject as a list} |
---|
717 | |
---|
718 | If \code{LispObject} is a list, it will have the type \code{Cons}. One |
---|
719 | can then use the \code{copyToArray} method to make things a bit more |
---|
720 | suitable for Java iteration. |
---|
721 | |
---|
722 | \begin{listing-java} |
---|
723 | LispObject result = interpreter.eval("'(1 2 4 5)"); |
---|
724 | if (result instanceof Cons) { |
---|
725 | LispObject array[] = ((Cons)result.copyToArray()); |
---|
726 | ... |
---|
727 | } |
---|
728 | \end{listing-java} |
---|
729 | |
---|
730 | A more Lispy way to iterate down a list is to use the \code{cdr()} access |
---|
731 | function just as like one would traverse a list in Lisp:; |
---|
732 | |
---|
733 | \begin{listing-java} |
---|
734 | LispObject result = interpreter.eval("'(1 2 4 5)"); |
---|
735 | while (result != Symbol.NIL) { |
---|
736 | doSomething(result.car()); |
---|
737 | result = result.cdr(); |
---|
738 | } |
---|
739 | \end{listing-java} |
---|
740 | |
---|
741 | \section{Java Scripting API (JSR-223)} |
---|
742 | \label{section:java-scripting-api} |
---|
743 | |
---|
744 | ABCL can be built with support for JSR-223~\cite{jsr-223}, which offers |
---|
745 | a language-agnostic API to invoke other languages from Java. The binary |
---|
746 | distribution download-able from ABCL's home page is built with JSR-223 |
---|
747 | support. If you're building ABCL from source on a pre-1.6 JVM, you need |
---|
748 | to have a JSR-223 implementation in your classpath (such as Apache |
---|
749 | Commons BSF 3.x or greater) in order to build ABCL with JSR-223 support; |
---|
750 | otherwise, this feature will not be built. |
---|
751 | |
---|
752 | This section describes the design decisions behind the ABCL JSR-223 |
---|
753 | support. It is not a description of what JSR-223 is or a tutorial on |
---|
754 | how to use it. See |
---|
755 | \url{http://abcl.org/trac/browser/trunk/abcl/examples/jsr-223} |
---|
756 | for example usage. |
---|
757 | |
---|
758 | \subsection{Conversions} |
---|
759 | |
---|
760 | In general, ABCL's implementation of the JSR-223 API performs implicit |
---|
761 | conversion from Java objects to Lisp objects when invoking Lisp from |
---|
762 | Java, and the opposite when returning values from Java to Lisp. This |
---|
763 | potentially reduces coupling between user code and ABCL. To avoid such |
---|
764 | conversions, wrap the relevant objects in \code{JavaObject} instances. |
---|
765 | |
---|
766 | \subsection{Implemented JSR-223 interfaces} |
---|
767 | |
---|
768 | JSR-223 defines three main interfaces, of which two (\code{Invocable} |
---|
769 | and \code{Compilable}) are optional. ABCL implements all the three |
---|
770 | interfaces - \code{ScriptEngine} and the two optional ones - almost |
---|
771 | completely. While the JSR-223 API is not specific to a single scripting |
---|
772 | language, it was designed with languages with a more or less Java-like |
---|
773 | object model in mind: languages such as JavaScript, Python, Ruby, which |
---|
774 | have a concept of "class" or "object" with "fields" and "methods". Lisp |
---|
775 | is a bit different, so certain adaptations were made, and in one case a |
---|
776 | method has been left unimplemented since it does not map at all to Lisp. |
---|
777 | |
---|
778 | \subsubsection{The ScriptEngine} |
---|
779 | |
---|
780 | The main interface defined by JSR-223, \code{javax.script.ScriptEngine}, |
---|
781 | is implemented by the class |
---|
782 | \code{org.armedbear.lisp.scripting.AbclScriptEngine}. \code{AbclScriptEngine} |
---|
783 | is a singleton, reflecting the fact that ABCL is a singleton as |
---|
784 | well. You can obtain an instance of \code{AbclScriptEngine} using the |
---|
785 | \code{AbclScriptEngineFactory} or by using the service provider |
---|
786 | mechanism through \code{ScriptEngineManager} (refer to the |
---|
787 | \texttt{javax.script} documentation). |
---|
788 | |
---|
789 | \subsection{Start-up and configuration file} |
---|
790 | |
---|
791 | At start-up (i.e. when its constructor is invoked, as part of the |
---|
792 | static initialization phase of \code{AbclScriptEngineFactory}) the |
---|
793 | ABCL script engine attempts to load an "init file" from the classpath |
---|
794 | (\texttt{/abcl-script-config.lisp}). If present, this file can be used |
---|
795 | to customize the behavior of the engine, by setting a number of |
---|
796 | variables in the \code{ABCL-SCRIPT} package. Here is a list of the |
---|
797 | available variables: |
---|
798 | |
---|
799 | \begin{description} |
---|
800 | \item[\texttt{*use-throwing-debugger*}] controls whether ABCL uses a |
---|
801 | non-standard debugging hook function to throw a Java exception |
---|
802 | instead of dropping into the debugger in case of unhandled error |
---|
803 | conditions. |
---|
804 | \begin{itemize} |
---|
805 | \item Default value: \texttt{T} |
---|
806 | \item Rationale: it is more convenient for Java programmers using |
---|
807 | Lisp as a scripting language to have it return exceptions to Java |
---|
808 | instead of handling them in the Lisp world. |
---|
809 | \item Known Issues: the non-standard debugger hook has been reported |
---|
810 | to misbehave in certain circumstances, so consider disabling it if |
---|
811 | it doesn't work for you. |
---|
812 | \end{itemize} |
---|
813 | \item[\texttt{*launch-swank-at-startup*}] If true, Swank will be launched at |
---|
814 | startup. See \texttt{*swank-dir*} and \texttt{*swank-port*}. |
---|
815 | \begin{itemize} |
---|
816 | \item Default value: \texttt{NIL} |
---|
817 | \end{itemize} |
---|
818 | \item[\texttt{*swank-dir*}] The directory where Swank is installed. Must be set |
---|
819 | if \texttt{*launch-swank-at-startup*} is true. |
---|
820 | \item[\texttt{*swank-port*}] The port where Swank will listen for |
---|
821 | connections. Must be set if \texttt{*launch-swank-at-startup*} is |
---|
822 | true. |
---|
823 | \begin{itemize} |
---|
824 | \item Default value: 4005 |
---|
825 | \end{itemize} |
---|
826 | \end{description} |
---|
827 | |
---|
828 | Additionally, at startup the AbclScriptEngine will \code{(require |
---|
829 | 'asdf)} - in fact, it uses asdf to load Swank. |
---|
830 | |
---|
831 | \subsection{Evaluation} |
---|
832 | |
---|
833 | Code is read and evaluated in the package \code{ABCL-SCRIPT-USER}. This |
---|
834 | packages \texttt{USE}s the \code{COMMON-LISP}, \code{JAVA} and |
---|
835 | \code{ABCL-SCRIPT} packages. Future versions of the script engine might |
---|
836 | make this default package configurable. The \code{CL:LOAD} function is |
---|
837 | used under the hood for evaluating code, and thus the behavior of |
---|
838 | \code{LOAD} is guaranteed. This allows, among other things, |
---|
839 | \code{IN-PACKAGE} forms to change the package in which the loaded code |
---|
840 | is read. |
---|
841 | |
---|
842 | It is possible to evaluate code in what JSR-223 calls a |
---|
843 | ``ScriptContext'' (basically a flat environment of name$\rightarrow$value |
---|
844 | pairs). This context is used to establish special bindings for all the |
---|
845 | variables defined in it; since variable names are strings from Java's |
---|
846 | point of view, they are first interned using \code{READ-FROM-STRING} with, as |
---|
847 | usual, \code{ABCL-SCRIPT-USER} as the default package. Variables are declared |
---|
848 | special because CL's \code{LOAD}, \code{EVAL} and \code{COMPILE} |
---|
849 | functions work in a null lexical environment and would ignore |
---|
850 | non-special bindings. |
---|
851 | |
---|
852 | Contrary to what the function \code{LOAD} does, evaluation of a series |
---|
853 | of forms returns the value of the last form instead of T, so the |
---|
854 | evaluation of short scripts does the Right Thing. |
---|
855 | |
---|
856 | \subsection{Compilation} |
---|
857 | |
---|
858 | \code{AbclScriptEngine} implements the \code{javax.script.Compilable} |
---|
859 | interface. Currently it only supports compilation using temporary |
---|
860 | files. Compiled code, returned as an instance of |
---|
861 | \texttt{javax.script.CompiledScript}, is read, compiled and executed |
---|
862 | by default in the \code{abcl-script-user} package, just like evaluated |
---|
863 | code. In contrast to evaluated code, though, due to the way the |
---|
864 | \textsc{ABCL} compiler works, compiled code contains no reference to |
---|
865 | top-level self-evaluating objects (like numbers or strings). Thus, |
---|
866 | when evaluated, a piece of compiled code will return the value of the |
---|
867 | last non-self-evaluating form: for example the code |
---|
868 | ``\code{(do-something) 42}'' will return 42 when interpreted, but will |
---|
869 | return the result of (do-something) when compiled and later |
---|
870 | evaluated. To ensure consistency of behavior between interpreted and |
---|
871 | compiled code, make sure the last form is always a compound form - at |
---|
872 | least \code{(identity some-literal-object)}. Note that this issue |
---|
873 | should not matter in real code, where it is unlikely that a top-level |
---|
874 | self-evaluating form will appear as the last form in a file (in fact, |
---|
875 | the Common Lisp load function always returns \code{t} upon success; |
---|
876 | with \textsc{JSR-223} this policy has been changed to make evaluation |
---|
877 | of small code snippets work as intended). |
---|
878 | |
---|
879 | \subsection{Invocation of functions and methods} |
---|
880 | |
---|
881 | AbclScriptEngine implements the \code{javax.script.Invocable} |
---|
882 | interface, which allows to directly call Lisp functions and methods, |
---|
883 | and to obtain Lisp implementations of Java interfaces. This is only |
---|
884 | partially possible with Lisp since it has functions, but not methods - |
---|
885 | not in the traditional Object Oriented sense, at least, since Lisp methods are not |
---|
886 | attached to objects but belong to generic functions. Thus, the method |
---|
887 | \code{invokeMethod()} is not implemented and throws an |
---|
888 | \texttt{UnsupportedOperationException} when called. The \code{invokeFunction()} |
---|
889 | method should be used to call both regular and generic functions. |
---|
890 | |
---|
891 | \subsection{Implementation of Java interfaces in Lisp} |
---|
892 | |
---|
893 | ABCL can use the Java reflection-based proxy feature to implement Java |
---|
894 | interfaces in Lisp. It has several built-in ways to implement an |
---|
895 | interface, and supports definition of new ones. The |
---|
896 | \code{JAVA:JMAKE-PROXY} generic function is used to make such |
---|
897 | proxies. It has the following signature: |
---|
898 | |
---|
899 | \code{jmake-proxy interface implementation \&optional lisp-this ==> proxy} |
---|
900 | |
---|
901 | \code{interface} is a Java interface metaobject (e.g. obtained by |
---|
902 | invoking \code{jclass}) or a string naming a Java |
---|
903 | interface. \code{implementation} is the object used to implement the |
---|
904 | interface - several built-in methods of jmake-proxy exist for various |
---|
905 | types of implementations. \code{lisp-this} is an object passed to the |
---|
906 | closures implementing the Lisp "methods" of the interface, and |
---|
907 | defaults to \code{NIL}. |
---|
908 | |
---|
909 | The returned proxy is an instance of the interface, with methods |
---|
910 | implemented with Lisp functions. |
---|
911 | |
---|
912 | Built-in interface-implementation types include: |
---|
913 | |
---|
914 | \begin{itemize} |
---|
915 | \item a single Lisp function which, upon invocation of any method in |
---|
916 | the interface, will be passed the method name, the Lisp-this object, |
---|
917 | and all the parameters. Useful for interfaces with a single method, |
---|
918 | or to implement custom interface-implementation strategies. |
---|
919 | \item a hash-map of method-name $\rightarrow$ Lisp function mappings. Function |
---|
920 | signature is \code{(lisp-this \&rest args)}. |
---|
921 | \item a Lisp package. The name of the Java method to invoke is first |
---|
922 | transformed in an idiomatic Lisp name (\code{javaMethodName} becomes |
---|
923 | \code{JAVA-METHOD-NAME}) and a symbol with that name is searched in |
---|
924 | the package. If it exists and is \code{FBOUND}, the corresponding function |
---|
925 | will be called. Function signature is as the hash-table case. |
---|
926 | \end{itemize} |
---|
927 | |
---|
928 | This functionality is exposed by the class \code{AbclScriptEngine} via |
---|
929 | the two methods \code{getInterface(Class)} and |
---|
930 | \code{getInterface(Object, Class)}. The former returns an interface |
---|
931 | implemented with the current Lisp package, the latter allows the |
---|
932 | programmer to pass an interface-implementation object which will in turn |
---|
933 | be passed to the \code{jmake-proxy} generic function. |
---|
934 | |
---|
935 | |
---|
936 | \section{Implementation Extension Dictionaries} |
---|
937 | |
---|
938 | As outlined by the \textsc{CLHS} \textsc{ANSI} conformance guidelines, |
---|
939 | we document the extensions to the Armed Bear Common Lisp |
---|
940 | implementation made accessible to the user by virtue of being an |
---|
941 | exported symbol in the \code{java}, \code{threads}, or |
---|
942 | \code{extensions} packages. Additional, higher-level information |
---|
943 | about the extensions afforded by the implementation can be found in |
---|
944 | \ref{chapter:beyond-ansi} on page \pageref{chapter:beyond-ansi}. |
---|
945 | |
---|
946 | \subsection{The JAVA Dictionary} |
---|
947 | |
---|
948 | The symbols exported from the the \code{JAVA} package constitute the |
---|
949 | primary mechanism to interact with Java language constructs within the |
---|
950 | hosting virtual machine. |
---|
951 | |
---|
952 | \subsubsection{Modifying the JVM CLASSPATH} |
---|
953 | |
---|
954 | The \code{JAVA:ADD-TO-CLASSPATH} generic functions allows one to add the |
---|
955 | specified pathname or list of pathnames to the current classpath |
---|
956 | used by \textsc{ABCL}, allowing the dynamic loading of \textsc{JVM} objects: |
---|
957 | |
---|
958 | \begin{listing-lisp} |
---|
959 | CL-USER> (add-to-classpath "/path/to/some.jar") |
---|
960 | \end{listing-lisp} |
---|
961 | |
---|
962 | N.b \code{ADD-TO-CLASSPATH} only affects the classloader used by \textsc{ABCL} |
---|
963 | (the value of the special variable \code{JAVA:*CLASSLOADER*}. It has |
---|
964 | no effect on \textsc{Java} code outside \textsc{ABCL}. |
---|
965 | |
---|
966 | \subsubsection{Creating a synthetic Java Class at Runtime} |
---|
967 | |
---|
968 | For details on the mechanism available to create a fully synthetic |
---|
969 | Java class at runtime can be found in \code{JAVA:JNEW-RUNTIME-CLASS} |
---|
970 | on \ref{JAVA:JNEW-RUNTIME-CLASS}. |
---|
971 | |
---|
972 | % include autogen docs for the JAVA package. |
---|
973 | \include{java} |
---|
974 | |
---|
975 | \subsection{The THREADS Dictionary} |
---|
976 | |
---|
977 | The extensions for handling multi-threaded execution are collected in |
---|
978 | the \code{THREADS} package. Most of the abstractions in Doug Lea's |
---|
979 | excellent \code{java.util.concurrent} packages may be manipulated |
---|
980 | directly via the JSS contrib to great effect \cite{lea-1998} |
---|
981 | |
---|
982 | \subsubsection{Threading Models} |
---|
983 | \index{Threading Models} The interface afforded by |
---|
984 | \code{threads:make-thread} constructs a thread according to the |
---|
985 | current value of \code{THREADS:*THREADING-MODEL*}. Nominally such |
---|
986 | threads are constructed under the the default \code{:NATIVE} value, by |
---|
987 | which a thread of execution native to the underlying platform is |
---|
988 | associated with each \code{LISP-THREAD}. When the value |
---|
989 | \code{:VIRTUAL-THREADS} is present in \code{CL:*FEATURES*}, the user |
---|
990 | may spawn the lighter weight virtual threads by setting |
---|
991 | \code{THREADS:*THREADING-MODEL*} to \code{:VIRTUAL} before invoking |
---|
992 | the \code{THREADS:MAKE-THREAD} interface\footnote{This facility is |
---|
993 | made available at runtime in \textsc{openjdk19} and later when enabled |
---|
994 | via the runtime \code{--enable-features} flag}. |
---|
995 | |
---|
996 | % include autogen docs for the THREADS package. |
---|
997 | \include{threads} |
---|
998 | |
---|
999 | \subsection{The EXTENSIONS Dictionary} |
---|
1000 | |
---|
1001 | The symbols in the \code{extensions} package (often referenced by its |
---|
1002 | shorter nickname \code{ext}) constitutes extensions to the |
---|
1003 | \textsc{ANSI} standard that are potentially useful to the user. They |
---|
1004 | include functions for manipulating network sockets, running external |
---|
1005 | programs, registering object finalizers, constructing reference weakly |
---|
1006 | held by the garbage collector and others. |
---|
1007 | |
---|
1008 | See \cite{RHODES2007} for a generic function interface to the native |
---|
1009 | \textsc{JVM} contract for \code{java.util.List}. |
---|
1010 | |
---|
1011 | % include autogen docs for the EXTENSIONS package. |
---|
1012 | \include{extensions} |
---|
1013 | |
---|
1014 | \chapter{Beyond ANSI} |
---|
1015 | \label{chapter:beyond-ansi} |
---|
1016 | |
---|
1017 | Naturally, in striving to be a useful contemporary \textsc{Common |
---|
1018 | Lisp} implementation, \textsc{ABCL} endeavors to include extensions |
---|
1019 | beyond the ANSI specification which are either widely adopted or are |
---|
1020 | especially useful in working with the hosting \textsc{JVM}. This |
---|
1021 | chapter documents such extensions beyond ANSI conformation. |
---|
1022 | |
---|
1023 | \section{Compiler to Java Virtual Machine Bytecode} |
---|
1024 | |
---|
1025 | The \code{CL:COMPILE-FILE} interface emits a packed fasl \footnote{The |
---|
1026 | term ``fasl'' is short for ``fast loader'', which in \textsc{Common |
---|
1027 | Lisp} implementations refers} format whose \code{CL:PATHNAME} has |
---|
1028 | the \code{TYPE} ``abcl''. Structurally, \textsc{ABCL}'s fasls are |
---|
1029 | operating system neutral byte archives packaged in the zip compression |
---|
1030 | format which contain artifacts whose loading \code{CL:LOAD} |
---|
1031 | understands. Internally, our fasls contain a piece of Lisp that |
---|
1032 | \code{CL:LOAD} interprets as instructions to load the Java classes |
---|
1033 | emitted by the \textsc{ABCL} Lisp compiler. The classes emitted by |
---|
1034 | the \textsc{ABCL} compiler have a JVM class file version of ``49.0''. |
---|
1035 | |
---|
1036 | % TODO check on what the compiler is currently emitting |
---|
1037 | |
---|
1038 | \subsection{Compiler Diagnostics} |
---|
1039 | |
---|
1040 | By default, the interface to the compiler does not signal warnings |
---|
1041 | that result in its invocation, outputing diagnostics to the standard |
---|
1042 | reporting stream. The generalized boolean |
---|
1043 | \code{JVM:*RESIGNAL-COMPILER-WARNINGS*} provides the interface to |
---|
1044 | enabling the compiler to signal all warnings. |
---|
1045 | |
---|
1046 | \subsection{Decompilation} |
---|
1047 | |
---|
1048 | \label{CL:DISASSEMBLE} |
---|
1049 | Since \textsc{ABCL} compiles to JVM bytecode, the |
---|
1050 | \code{CL:DISASSEMBLE} function provides introspection for the result |
---|
1051 | of that compilation. By default the implementation attempts to find |
---|
1052 | and use the \code{javap} command line tool shipped as part of the Java |
---|
1053 | Development Kit to disassemble the results. Code for the use of |
---|
1054 | additional JVM bytecode introspection tools is packaged as part of the |
---|
1055 | ABCL-INTROSPECT contrib. After loading one of these tools via ASDF, |
---|
1056 | the \code{SYS:CHOOSE-DISASSEMBLER} function can be used to select the |
---|
1057 | tool used by \code{CL:DISASSEMBLE}. See |
---|
1058 | \ref{abcl-introspect-disassemblers} |
---|
1059 | on \pageref{abcl-introspect-disassemblers} for further details. |
---|
1060 | |
---|
1061 | \section{Pathname} |
---|
1062 | \index{PATHNAME} |
---|
1063 | |
---|
1064 | \textsc{ABCL} extends its implementation of \textsc{ANSI} |
---|
1065 | \code{PATHNAME} objects in order to allow read-only access to sources |
---|
1066 | of bytes available via URIs \footnote{A \textsc{URI} is essentially a |
---|
1067 | super-set of what is commonly understood as a \textsc{URL}. We |
---|
1068 | sometimes use the term URL as shorthand in describing the URL |
---|
1069 | Pathnames, even though the corresponding encoding is more akin to a |
---|
1070 | URI as described in RFC3986 \cite{rfc3986}.} and to enable the |
---|
1071 | addressing of arbitrarily recursive entries within \textsc{ZIP} |
---|
1072 | archives. These implementation decisions are encapsulated by the |
---|
1073 | specialization of \code{CL:PATHNAME} as the \code{EXT:URL-PATHNAME} |
---|
1074 | and the \code{EXT:JAR-PATHNAME} types. |
---|
1075 | |
---|
1076 | % RDF description of type hierarchy |
---|
1077 | % TODO Render via some LaTeX mode for graphviz? |
---|
1078 | \begin{verbatim} |
---|
1079 | @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . |
---|
1080 | @prefix ext: <http://abcl.org/cl/package/extensions/> . |
---|
1081 | @prefix cl: <http://abcl.org/cl/package/common-lisp/> . |
---|
1082 | |
---|
1083 | <ext:jar-pathname> rdfs:subClassOf <ext:url-pathname> . |
---|
1084 | <ext:url-pathname> rdfs:subClassOf <cl:pathname> . |
---|
1085 | <cl:logical-pathname> rdfs:subClassOf <cl:pathname> . |
---|
1086 | \end{verbatim} |
---|
1087 | |
---|
1088 | The \code{EXT:URL-PATHAME} object utilizes the standard \textsc{JVM} |
---|
1089 | implementation of \code{java.net.URL} to access resources named by the |
---|
1090 | ``file'', ``http'', ``https'', ``jar'', and ``ftp'' schemes. |
---|
1091 | Additional protocol handlers for other may be installed at runtime by |
---|
1092 | having \textsc{JVM} symbols present in the |
---|
1093 | \code{sun.net.protocol.dynamic}\footnote{See \cite{maso2000} for more |
---|
1094 | details. \url{https://stackoverflow.com/questions/41784555/print-all-supported-url-schemes-in-java8} |
---|
1095 | contains a more up-to-date description.} The namestring of a |
---|
1096 | \code{EXT:URL-PATHNAME} object is equivalent to the string |
---|
1097 | serialization of its representation encoded via the ``percent |
---|
1098 | encoding'' rules of URIs\footnote{See |
---|
1099 | \url{https://url.spec.whatwg.org/\#percent-encoded-bytes} for a |
---|
1100 | description of this process.}. |
---|
1101 | |
---|
1102 | The \code{EXT:JAR-PATHNAME} extension utilizes the specialization of |
---|
1103 | \code{EXT:URL-PATHNAME} to provide access to components of |
---|
1104 | \textsc{ZIP} archives, of which the \textsc{JAR} (Java ARchive) format |
---|
1105 | is a super-set. \footnote{JAR archive utilize the ZIP format for |
---|
1106 | packing and compression adding procedures to add supporting metadata |
---|
1107 | in a manifest which is standardized text file stored at a canonical |
---|
1108 | location within the archive.} \textsc{JAR} archives are typically |
---|
1109 | used to aggregate many Java class files and associated metadata and |
---|
1110 | resources (text, images, etc.) into one file for distribution. |
---|
1111 | \textsc{ABCL} is typically packaged as a \textsc{JAR} archive and |
---|
1112 | emits its fasls as \textsc{ZIP} files. |
---|
1113 | |
---|
1114 | Both the \code{EXT:URL-PATHNAME} and \code{EXT:JAR-PATHNAME} |
---|
1115 | specializations may be broadly used anywhere a \code{CL:PATHNAME} is |
---|
1116 | accepted with the general caveat that stream obtained via |
---|
1117 | \code{CL:OPEN} on either sub-type cannot be the target of write |
---|
1118 | operations. |
---|
1119 | |
---|
1120 | \subsubsection{URL-PATHNAME} |
---|
1121 | \label{EXTENSIONS:URL-PATHNAME} |
---|
1122 | \index{URL-PATHNAME} |
---|
1123 | |
---|
1124 | A \code{URL-PATHNAME} denotes a source of bytes addressable by its |
---|
1125 | corresponding namestring interpreted as a \textsc{URI}. |
---|
1126 | |
---|
1127 | A \code{EXT:URL-PATHNAME} always has a \code{HOST} component that is a |
---|
1128 | property list. The values of the \code{HOST} property list are always |
---|
1129 | character strings. The allowed keys have the following meanings: |
---|
1130 | |
---|
1131 | \begin{description} |
---|
1132 | \item[:SCHEME] Scheme of URI ("http", "ftp", "bundle", etc.) |
---|
1133 | \item[:AUTHORITY] Valid authority according to the URI scheme. For |
---|
1134 | "http" this could be "example.org:8080". |
---|
1135 | \item[:QUERY] The query of the \textsc{URI} |
---|
1136 | \item[:FRAGMENT] The fragment portion of the \textsc{URI} |
---|
1137 | \end{description} |
---|
1138 | |
---|
1139 | If the \textsc{:SCHEME} property is missing, it is assumed to be |
---|
1140 | ``file'' denoting a reference to a file on the local file-system and |
---|
1141 | will be normalized as such in any pathname subjected to |
---|
1142 | \code{TRUENAME} resolution. |
---|
1143 | |
---|
1144 | In order to encapsulate the implementation decisions for these |
---|
1145 | meanings, the following functions provide a SETF-able API for |
---|
1146 | reading and writing such values: \code{URL-PATHNAME-QUERY}, |
---|
1147 | \code{URL-PATHNAME-FRAGMENT}, \code{URL-PATHNAME-AUTHORITY}, and |
---|
1148 | \code{URL-PATHNAME-SCHEME}. The specific sub-type of a Pathname may |
---|
1149 | be determined with the predicates \code{PATHNAME-URL-P} and |
---|
1150 | \code{PATHNAME-JAR-P}. |
---|
1151 | |
---|
1152 | \label{EXTENSIONS:URL-PATHNAME-SCHEME} |
---|
1153 | \index{URL-PATHNAME-SCHEME} |
---|
1154 | |
---|
1155 | \label{EXTENSIONS:URL-PATHNAME-FRAGMENT} |
---|
1156 | \index{URL-PATHNAME-FRAGMENT} |
---|
1157 | |
---|
1158 | \label{EXTENSIONS:URL-PATHNAME-AUTHORITY} |
---|
1159 | \index{URL-PATHNAME-AUTHORITY} |
---|
1160 | |
---|
1161 | \label{EXTENSIONS:PATHNAME-URL-P} |
---|
1162 | \index{PATHNAME-URL-P} |
---|
1163 | |
---|
1164 | \label{EXTENSIONS:URL-PATHNAME-QUERY} |
---|
1165 | \index{URL-PATHNAME-QUERY} |
---|
1166 | |
---|
1167 | Any results of canonicalization procedures performed on a object of |
---|
1168 | type \code{EXT:URL-PATHNAME} via local or network resolutions |
---|
1169 | discarded between attempts (i.e. the implementation does not attempt |
---|
1170 | to cache the results of current name resolution of the URI for |
---|
1171 | underlying resource unless it is requested to be resolved.) Upon |
---|
1172 | resolution, any canonicalization procedures followed in resolving the |
---|
1173 | resource (e.g. following redirects) are discarded. Users may |
---|
1174 | programatically initiate a new, local computation of the resolution of |
---|
1175 | the resource by applying the \code{CL:TRUENAME} function to a |
---|
1176 | \code{EXT:URL-PATHNAME} object. Depending on the reliability and |
---|
1177 | properties of your local \textsc{REST} infrastructure, these results |
---|
1178 | may not necessarily be idempotent over time\footnote {See |
---|
1179 | \cite{uri-pathname} for the design and implementation notes for the |
---|
1180 | technical details}. A future implementation may attempt to expose an |
---|
1181 | API to observer/customize the content negotiation initiated during |
---|
1182 | retrieval of the representation of a given resource, which is |
---|
1183 | currently handled at the application level. |
---|
1184 | |
---|
1185 | The implementation of \code{EXT:URL-PATHNAME} allows the \textsc{ABCL} |
---|
1186 | user to dynamically load code from the network. For example, |
---|
1187 | \textsc{Quicklisp} (\cite{quicklisp}) may be completely installed from |
---|
1188 | the \textsc{REPL} to download and execute the Quicklisp setup code via: |
---|
1189 | |
---|
1190 | \begin{listing-lisp} |
---|
1191 | CL-USER> (load "https://beta.quicklisp.org/quicklisp.lisp") |
---|
1192 | \end{listing-lisp} |
---|
1193 | |
---|
1194 | \label{section:jar-pathname} |
---|
1195 | |
---|
1196 | \subsubsection{JAR-PATHNAME} |
---|
1197 | \label{section:JAR-PATHNAME} |
---|
1198 | \index{JAR-PATHNAME} |
---|
1199 | |
---|
1200 | In \textsc{ABCL}, the \code{DEVICE} can be either a string either |
---|
1201 | denoting a drive letter or a UNC mount under \textsc{DOS} or a list of |
---|
1202 | one or more elements. If \code{DEVICE} is a list, it denotes a |
---|
1203 | \code{EXT:JAR-PATHNAME}. |
---|
1204 | |
---|
1205 | The implementation extends the \textsc{ANSI} specification with |
---|
1206 | \textsc{EXT:JAR-PATHNAME} by utilizing its \code{DEVICE} to contain a |
---|
1207 | list of pathnames denoting the location of and relative address within |
---|
1208 | a \textsc{ZIP} archive. The first member of this list will be a |
---|
1209 | \code{EXT:URL-PATHNAME} designates the root source of bytes encoded |
---|
1210 | via the \textsc{ZIP} compression algorithm. This reference can either |
---|
1211 | be to a file located on the local file-system or as a remote source |
---|
1212 | via an stream-oriented messaging protocol such as \textsc{https}. The |
---|
1213 | remainder of the \code{DEVICE} list contains ``traditional'' |
---|
1214 | \code{CL:PATHNAME} objects denoting successive relative archive paths. |
---|
1215 | This allows pathnames to reference an entry in an arbitrarily nested |
---|
1216 | ZIP archives, which is the case when the an ABCL fasl is included in |
---|
1217 | in a jar archive. |
---|
1218 | |
---|
1219 | In order to implement useful behavior of merging with pathname |
---|
1220 | defaults, the implementation will contain the \code{:UNSPECIFIC} |
---|
1221 | keyword in any TRUENAME that wasn't explicitly merging with a |
---|
1222 | \code{EXT:JAR-PATHNAME}. Therefore, the implementation extends the |
---|
1223 | semantics for the usual merge semantics when |
---|
1224 | \code{*DEFAULT-PATHNAME-DEFAULTS*} contains a \code{EXT:JAR-PATHNAME} |
---|
1225 | with the ``do what I mean'' algorithm described in |
---|
1226 | \ref{section:conformance} on page \pageref{section:conformance}. |
---|
1227 | |
---|
1228 | The namestring representation of \code{EXT:JAR-PATHNAME} references |
---|
1229 | use successive ``jar'' prefixes and corresponding ``!'' suffixes to |
---|
1230 | encapsulate successive locations. Described broadly, a |
---|
1231 | \code{EXT:JAR-PATHNAME} encapsulates the \textsc{URL} describing the |
---|
1232 | location of the archive and a possible entry within that archive. |
---|
1233 | |
---|
1234 | \begin{verbatim} |
---|
1235 | jar:<url>!/[<entry>] |
---|
1236 | \end{verbatim} |
---|
1237 | |
---|
1238 | The \textsc{URL} usually has the ``file'' scheme, but remote locations |
---|
1239 | expressed in the ``https'' or ``http'' are also allowed. |
---|
1240 | |
---|
1241 | Subsequent entries within an archive are denoted via prefixing |
---|
1242 | additional ``jar'' schemes and suffixing the associated path. |
---|
1243 | \begin{verbatim} |
---|
1244 | jar:jar:<url>!/<entry0>!/[<entry1>] |
---|
1245 | jar:jar:jar:<url>!/<entry0>!/<entry1>!/[<entry2>] |
---|
1246 | \end{verbatim} |
---|
1247 | |
---|
1248 | |
---|
1249 | \section{Package-Local Nicknames} |
---|
1250 | \label{section:package-local-nicknames} |
---|
1251 | |
---|
1252 | ABCL allows giving packages local nicknames which allow short and |
---|
1253 | easy-to-use names to be used without fear of name conflict associated |
---|
1254 | with normal nicknames.\footnote{Package-local nicknames were |
---|
1255 | originally developed in SBCL.} |
---|
1256 | |
---|
1257 | A local nickname is valid only when inside the package for which it |
---|
1258 | has been specified. Different packages can use same local nickname for |
---|
1259 | different global names, or different local nickname for same global |
---|
1260 | name. |
---|
1261 | |
---|
1262 | Symbol \code{:package-local-nicknames} in \code{*features*} denotes the |
---|
1263 | support for this feature. |
---|
1264 | |
---|
1265 | \index{DEFPACKAGE} |
---|
1266 | The options to \code{defpackage} are extended with a new option |
---|
1267 | \code{:local-nicknames (local-nickname actual-package-name)*}. |
---|
1268 | |
---|
1269 | The new package has the specified local nicknames for the corresponding |
---|
1270 | actual packages. |
---|
1271 | |
---|
1272 | Example: |
---|
1273 | \begin{listing-lisp} |
---|
1274 | (defpackage :bar (:intern "X")) |
---|
1275 | (defpackage :foo (:intern "X")) |
---|
1276 | (defpackage :quux (:use :cl) |
---|
1277 | (:local-nicknames (:bar :foo) (:foo :bar))) |
---|
1278 | (find-symbol "X" :foo) ; => FOO::X |
---|
1279 | (find-symbol "X" :bar) ; => BAR::X |
---|
1280 | (let ((*package* (find-package :quux))) |
---|
1281 | (find-symbol "X" :foo)) ; => BAR::X |
---|
1282 | (let ((*package* (find-package :quux))) |
---|
1283 | (find-symbol "X" :bar)) ; => FOO::X |
---|
1284 | \end{listing-lisp} |
---|
1285 | |
---|
1286 | \index{PACKAGE-LOCAL-NICKNAMES} |
---|
1287 | --- Function: \textbf{package-local-nicknames} [\textbf{ext}] \textit{package-designator} |
---|
1288 | |
---|
1289 | \begin{adjustwidth}{5em}{5em} |
---|
1290 | Returns an ALIST of \code{(local-nickname . actual-package)} |
---|
1291 | describing the nicknames local to the designated package. |
---|
1292 | |
---|
1293 | When in the designated package, calls to \code{find-package} with any |
---|
1294 | of the local-nicknames will return the corresponding actual-package |
---|
1295 | instead. This also affects all implied calls to \code{find-package}, |
---|
1296 | including those performed by the reader. |
---|
1297 | |
---|
1298 | When printing a package prefix for a symbol with a package local |
---|
1299 | nickname, the local nickname is used instead of the real name in order |
---|
1300 | to preserve print-read consistency. |
---|
1301 | \end{adjustwidth} |
---|
1302 | |
---|
1303 | \index{PACKAGE-LOCALLY-NICKNAMED-BY-LIST} |
---|
1304 | --- Function: \textbf{package-locally-nicknamed-by-list} [\textbf{ext}] \textit{package-designator} |
---|
1305 | |
---|
1306 | \begin{adjustwidth}{5em}{5em} |
---|
1307 | Returns a list of packages which have a local nickname for the |
---|
1308 | designated package. |
---|
1309 | \end{adjustwidth} |
---|
1310 | |
---|
1311 | \index{ADD-PACKAGE-LOCAL-NICKNAME} |
---|
1312 | --- Function: \textbf{add-package-local-nickname} [\textbf{ext}] \textit{local-nickname actual-package \&optional package-designator} |
---|
1313 | |
---|
1314 | \begin{adjustwidth}{5em}{5em} |
---|
1315 | Adds \code{local-nickname} for \code{actual-package} in the designated |
---|
1316 | package, defaulting to current package. \code{local-nickname} must be |
---|
1317 | a string designator, and \code{actual-package} must be a package |
---|
1318 | designator. |
---|
1319 | |
---|
1320 | Returns the designated package. |
---|
1321 | |
---|
1322 | Signals an error if \code{local-nickname} is already a package local |
---|
1323 | nickname for a different package, or if \code{local-nickname} is one |
---|
1324 | of "CL", "COMMON-LISP", or, "KEYWORD", or if \code{local-nickname} is |
---|
1325 | a global name or nickname for the package to which the nickname would |
---|
1326 | be added. |
---|
1327 | |
---|
1328 | When in the designated package, calls to \code{find-package} with the |
---|
1329 | \code{local-nickname} will return the package the designated |
---|
1330 | \code{actual-package} instead. This also affects all implied calls to |
---|
1331 | \code{find-package}, including those performed by the reader. |
---|
1332 | |
---|
1333 | When printing a package prefix for a symbol with a package local |
---|
1334 | nickname, local nickname is used instead of the real name in order to |
---|
1335 | preserve print-read consistency. |
---|
1336 | \end{adjustwidth} |
---|
1337 | |
---|
1338 | \index{REMOVE-PACKAGE-LOCAL-NICKNAME} |
---|
1339 | --- Function: \textbf{remove-package-local-nickname} [\textbf{ext}] \textit{old-nickname \&optional package-designator} |
---|
1340 | |
---|
1341 | \begin{adjustwidth}{5em}{5em} |
---|
1342 | If the designated package had \code{old-nickname} as a local nickname |
---|
1343 | for another package, it is removed. Returns true if the nickname |
---|
1344 | existed and was removed, and \code{nil} otherwise. |
---|
1345 | \end{adjustwidth} |
---|
1346 | |
---|
1347 | \section{Extensible Sequences} |
---|
1348 | |
---|
1349 | The SEQUENCE package fully implements Christopher Rhodes' proposal for |
---|
1350 | extensible sequences. These user extensible sequences are used |
---|
1351 | directly in \code{java-collections.lisp} provide these CLOS |
---|
1352 | abstractions on the standard Java collection classes as defined by the |
---|
1353 | \code{java.util.List} contract. |
---|
1354 | |
---|
1355 | %% an Example of using java.util.Lisp in Lisp would be nice |
---|
1356 | |
---|
1357 | This extension is not automatically loaded by the implementation. It |
---|
1358 | may be loaded via: |
---|
1359 | |
---|
1360 | \begin{listing-lisp} |
---|
1361 | CL-USER> (require :java-collections) |
---|
1362 | \end{listing-lisp} |
---|
1363 | |
---|
1364 | if both extensible sequences and their application to Java collections |
---|
1365 | is required, or |
---|
1366 | |
---|
1367 | \begin{listing-lisp} |
---|
1368 | CL-USER> (require :extensible-sequences) |
---|
1369 | \end{listing-lisp} |
---|
1370 | |
---|
1371 | if only the extensible sequences API as specified in \cite{RHODES2007} is |
---|
1372 | required. |
---|
1373 | |
---|
1374 | Note that \code{(require :java-collections)} must be issued before |
---|
1375 | \code{java.util.List} or any subclass is used as a specializer in a \textsc{CLOS} |
---|
1376 | method definition (see the section below). |
---|
1377 | |
---|
1378 | See Rhodes2007 \cite{RHODES2007} for the an overview of the |
---|
1379 | abstractions of the \code{java.util.collection} package afforded by |
---|
1380 | \code{JAVA-COLLECTIONS}. |
---|
1381 | |
---|
1382 | \section{Extensions to CLOS} |
---|
1383 | |
---|
1384 | \subsection{Metaobject Protocol} |
---|
1385 | |
---|
1386 | \textsc{ABCL} implements the metaobject protocol for \textsc{CLOS} as |
---|
1387 | specified in \textsc{(A)MOP}. The symbols are exported from the |
---|
1388 | package \code{MOP}. |
---|
1389 | |
---|
1390 | Contrary to the AMOP specification and following \textsc{SBCL}'s lead, |
---|
1391 | the metaclass \code{funcallable-standard-object} has |
---|
1392 | \code{funcallable-standard-class} as metaclass instead of |
---|
1393 | \code{standard-class}. |
---|
1394 | |
---|
1395 | \textsc{ABCL}'s fidelity to the AMOP specification is codified as part |
---|
1396 | of Pascal Costanza's \code{closer-mop} \ref{closer-mop} \cite{closer-mop}. |
---|
1397 | |
---|
1398 | \subsection{Specializing on Java classes} |
---|
1399 | |
---|
1400 | There is an additional syntax for specializing the parameter of a |
---|
1401 | generic function on a java class, viz. \code{(java:jclass |
---|
1402 | CLASS-STRING)} where \code{CLASS-STRING} is a string naming a Java |
---|
1403 | class in dotted package form. |
---|
1404 | |
---|
1405 | For instance the following specialization would perhaps allow one to |
---|
1406 | print more information about the contents of a \code{java.util.Collection} |
---|
1407 | object |
---|
1408 | |
---|
1409 | \begin{listing-lisp} |
---|
1410 | (defmethod print-object ((coll (java:jclass "java.util.Collection")) |
---|
1411 | stream) |
---|
1412 | ;;; ... |
---|
1413 | ) |
---|
1414 | \end{listing-lisp} |
---|
1415 | |
---|
1416 | If the class had been loaded via a classloader other than the original |
---|
1417 | the class you wish to specialize on, one needs to specify the |
---|
1418 | classloader as an optional third argument. |
---|
1419 | |
---|
1420 | \begin{listing-lisp} |
---|
1421 | |
---|
1422 | (defparameter *other-classloader* |
---|
1423 | (jcall "getBaseLoader" cl-user::*classpath-manager*)) |
---|
1424 | |
---|
1425 | (defmethod print-object |
---|
1426 | ((device-id (java:jclass "dto.nbi.service.hdm.alcatel.com.NBIDeviceID" |
---|
1427 | *other-classloader*)) |
---|
1428 | stream) |
---|
1429 | ;;; ... |
---|
1430 | ) |
---|
1431 | \end{listing-lisp} |
---|
1432 | |
---|
1433 | \subsection{Subtypes of \code{mop:specializer}} |
---|
1434 | |
---|
1435 | The implementation allows generic method specializers which extend the |
---|
1436 | \code{mop:specializer} type. See \cite{custom-specializers} for |
---|
1437 | justification and usage examples for such an abstraction. |
---|
1438 | |
---|
1439 | \section{Extensions to the Reader} |
---|
1440 | |
---|
1441 | We implement a special hexadecimal escape sequence for specifying 32 |
---|
1442 | bit characters to the Lisp reader\footnote{This represents a |
---|
1443 | compromise with contemporary in 2011 32bit hosting architectures for |
---|
1444 | which we wish to make text processing efficient. Should the User |
---|
1445 | require more control over \textsc{UNICODE} processing we recommend Edi Weisz' |
---|
1446 | excellent work with \textsc|{FLEXI-STREAMS} which we fully support}, namely we |
---|
1447 | allow a sequences of the form \verb~#\U~\emph{\texttt{xxxx}} to be processed |
---|
1448 | by the reader as character whose code is specified by the hexadecimal |
---|
1449 | digits \emph{\texttt{xxxx}}. The hexadecimal sequence may be one to four digits |
---|
1450 | long. |
---|
1451 | |
---|
1452 | % Why doesn't ALEXANDRIA work? Good question: Alexandria from |
---|
1453 | % Quicklisp 2010-10-07 fails a number of tests: |
---|
1454 | %% Form: (ALEXANDRIA.0.DEV:TYPE= 'LIST '(OR NULL CONS)) |
---|
1455 | %% Expected values: T |
---|
1456 | %% T |
---|
1457 | %% Actual values: NIL |
---|
1458 | %% T. |
---|
1459 | %% Test ALEXANDRIA-TESTS::TYPE=.3 failed |
---|
1460 | %% Form: (ALEXANDRIA.0.DEV:TYPE= 'NULL '(AND SYMBOL LIST)) |
---|
1461 | %% Expected values: T |
---|
1462 | %% T |
---|
1463 | %% Actual values: NIL |
---|
1464 | %% NIL. |
---|
1465 | |
---|
1466 | |
---|
1467 | Note that that the reader escaped sequence is never output by the |
---|
1468 | implementation. Instead, the implementation emits the bytes |
---|
1469 | corresponding Unicode character is output for characters whose code is |
---|
1470 | greater than \code{0x00ff}. |
---|
1471 | |
---|
1472 | \section{Overloading of the CL:REQUIRE Mechanism} |
---|
1473 | |
---|
1474 | The \code{CL:REQUIRE} mechanism is overloaded by attaching the |
---|
1475 | following behavior to the execution of \code{REQUIRE} on these symbols: |
---|
1476 | |
---|
1477 | \begin{description}[style=nextline] |
---|
1478 | |
---|
1479 | \item[\code{ASDF}] Loads the \textsc{ASDF} version shipped with the |
---|
1480 | implementation. After the evaluation of this symbols, symbols |
---|
1481 | passed to \code{CL:REQUIRE} which are otherwise unresolved, are |
---|
1482 | passed to ASDF for a chance for resolution. This means, for |
---|
1483 | instance if \code{CL-PPCRE} can be located as a loadable |
---|
1484 | \textsc{ASDF} system \code{(require :cl-ppcre)} is equivalent to |
---|
1485 | \code{(asdf:load-system :cl-ppcre)}. |
---|
1486 | |
---|
1487 | \item[\code{ABCL-CONTRIB}] Locates and pushes the top-level contents |
---|
1488 | of ``abcl-contrib.jar'' into the \textsc{ASDF} central registry. |
---|
1489 | |
---|
1490 | \begin{description}[style=nextline] |
---|
1491 | |
---|
1492 | \item[\code{abcl-asdf}] Functions for loading \textsc{JVM} |
---|
1493 | artifacts dynamically by extending \textsc{ASDF}. See |
---|
1494 | \ref{section:abcl-asdf} on page \pageref{section:abcl-asdf}. |
---|
1495 | |
---|
1496 | \item[\code{asdf-jar}] Package addressable \textsc{JVM} artifacts via |
---|
1497 | \code{abcl-asdf} descriptions as a single binary artifact |
---|
1498 | including recursive dependencies. See \ref{sec:asdf-jar} on |
---|
1499 | page \pageref{section:asdf-jar}. |
---|
1500 | |
---|
1501 | \item[\code{jna}] Allows the Java Native Interface |
---|
1502 | (\textsc{JNI}) facility to provide C-style linkage to other |
---|
1503 | operating system shared objects by dynamically loading the |
---|
1504 | 'jna.jar' artifact via Maven\footnote{This loading can be |
---|
1505 | inhibited if, at runtime, the Java class corresponding |
---|
1506 | ``:classname'' clause of the system definition is present.} |
---|
1507 | |
---|
1508 | \item[\code{quicklisp-abcl}] Loads \textsc{Quicklisp} by |
---|
1509 | possibly initiating a network download via |
---|
1510 | \code{EXT:URL-PATHMAME}. |
---|
1511 | |
---|
1512 | \item[\code{jfli}] A descendant of Rich Hickey's pre-Clojure |
---|
1513 | work on the JVM. |
---|
1514 | |
---|
1515 | \item[\code{jss}] Introduces dynamic inspection of present |
---|
1516 | symbols via the \code{SHARPSIGN-QUOTATION\_MARK} macros as |
---|
1517 | Java Syntax Sucks. See \ref{section:jss} on page |
---|
1518 | \pageref{sections:jss} for more details. |
---|
1519 | |
---|
1520 | \item[\code{abcl-introspect}] Provides a framework for |
---|
1521 | introspecting runtime Java and Lisp object values. Include |
---|
1522 | packaging for installing and using java decompilation tools |
---|
1523 | for use with \code{CL:DISASSEMBLE}. See |
---|
1524 | \ref{section:abcl-introspect} on |
---|
1525 | \pageref{section:abcl-introspect} for further information. |
---|
1526 | |
---|
1527 | \item[\code{abcl-build}] Provides a toolkit for building ABCL |
---|
1528 | from source, as well as installing the necessary tools for |
---|
1529 | such builds. See \ref{section:abcl-build} on page |
---|
1530 | \pageref{section:abcl-build}. |
---|
1531 | |
---|
1532 | \item[\code{named-readtables}] Provides a namespace for |
---|
1533 | readtables akin to the already-existing namespace of packages. |
---|
1534 | See \ref{section:named-readtables} on |
---|
1535 | \pageref{section:named-readtables} for further information. |
---|
1536 | |
---|
1537 | \item[\code{posix-syscalls}] Provides and demonstrates the |
---|
1538 | scaffolding for extending the implementation by use of direct |
---|
1539 | syscalls via the foreign function interface (FFI) afforded by |
---|
1540 | the JNA library. Upon loading this system, new implementations |
---|
1541 | of the \code{EXT:GETENV} and \code{UIOP/OS:GETENV} functions are |
---|
1542 | installed which use FFI to directly call the \sc{posix} syscalls |
---|
1543 | where available, which allows environment variables to be set. |
---|
1544 | \index{POSIX-SYSCALLS} |
---|
1545 | |
---|
1546 | \end{description} |
---|
1547 | \end{description} |
---|
1548 | |
---|
1549 | The user may extend the \code{CL:REQUIRE} mechanism by pushing |
---|
1550 | function hooks into \code{SYSTEM:*MODULE-PROVIDER-FUNCTIONS*}. Each |
---|
1551 | such hook function takes a single argument containing the symbol |
---|
1552 | passed to \code{CL:REQUIRE} and returns a non-\code{NIL} value if it |
---|
1553 | can successful resolve the symbol. |
---|
1554 | |
---|
1555 | \section{JSS extension of the Reader by SHARPSIGN-DOUBLE-QUOTE} |
---|
1556 | |
---|
1557 | The JSS contrib constitutes an additional, optional extension to the |
---|
1558 | reader in the definition of the \code{SHARPSIGN-DOUBLE-QUOTE} |
---|
1559 | (``\#\"'') reader macro. See section \ref{section:jss} on page |
---|
1560 | \pageref{section:jss} for more information. |
---|
1561 | |
---|
1562 | \section{ASDF} |
---|
1563 | |
---|
1564 | asdf-3.3.7 (see \cite{asdf}) is packaged as core component of |
---|
1565 | \textsc{ABCL}, but not loaded by default, as it relies on the |
---|
1566 | \textsc{CLOS} subsystem which can take a bit of time to |
---|
1567 | start \footnote{While this time is ``merely'' on the order of seconds |
---|
1568 | for contemporary 2011 machines, for applications that need to |
---|
1569 | initialize quickly, for example a web server, this time might be |
---|
1570 | unnecessarily long}. The packaged \textsc{ASDF} may be loaded by the |
---|
1571 | \textsc{ANSI} \code{REQUIRE} mechanism as follows: |
---|
1572 | |
---|
1573 | \begin{listing-lisp} |
---|
1574 | CL-USER> (require :asdf) |
---|
1575 | \end{listing-lisp} |
---|
1576 | |
---|
1577 | \section{Extension to CL:MAKE-ARRAY} |
---|
1578 | \label{section:make-array} |
---|
1579 | \index{MAKE-ARRAY} |
---|
1580 | |
---|
1581 | With the \code{:nio} feature is present\footnote{Available starting in |
---|
1582 | the Eighth Edition (aka abcl-1.7.0) and indicated by the presence of |
---|
1583 | \code{:nio} in \code{cl:*features*}}, the implementation adds two |
---|
1584 | keyword arguments to \code{cl:make-array}, viz. \code{:nio-buffer} and |
---|
1585 | \code{:nio-direct}. |
---|
1586 | |
---|
1587 | With the \code{:nio-buffer} keyword, the user is able to pass |
---|
1588 | instances of of \code{java.nio.ByteBuffer} and its subclasses for the |
---|
1589 | storage of vectors and arrays specialized on the byte-vector |
---|
1590 | types satisfying |
---|
1591 | |
---|
1592 | \begin{listing-lisp} |
---|
1593 | (or |
---|
1594 | (unsigned-byte 8) |
---|
1595 | (unsigned-byte 16) |
---|
1596 | (unsigned-byte 32)) |
---|
1597 | \end{listing-lisp} |
---|
1598 | |
---|
1599 | As an example, the following would use the \code{:nio-buffer} as |
---|
1600 | follows to create a 16 byte vector using the created byte-buffer for |
---|
1601 | storage: |
---|
1602 | |
---|
1603 | \begin{listing-lisp} |
---|
1604 | (let* ((length 16) |
---|
1605 | (byte-buffer (java:jstatic "allocate" "java.nio.ByteBuffer" length))) |
---|
1606 | (make-array length :element-type '(unsigned-byte 8) :nio-buffer byte-buffer)) |
---|
1607 | \end{listing-lisp} |
---|
1608 | |
---|
1609 | This feature is available in CFFI\footnote{Available at runtime via |
---|
1610 | \textsc{Quicklisp}} via |
---|
1611 | \code{CFFI-SYS:MAKE-SHAREABLE-BYTE-VECTOR}\footnote{Implemented in |
---|
1612 | \url{https://github.com/cffi/cffi/commit/47136ad9a97c2df98dbcd13a068e14489ced5b03}} |
---|
1613 | |
---|
1614 | \begin{description}[style=nextline] |
---|
1615 | |
---|
1616 | \item[\code{:nio-buffer NIO-BUFFER}] |
---|
1617 | |
---|
1618 | Initializes the contents of the new vector or array with the contents |
---|
1619 | of \code{NIO-BUFFER} which needs to be a reference to a |
---|
1620 | \code{java-object} of class \code{java.nio.ByteBuffer}. |
---|
1621 | |
---|
1622 | \item[\code{:nio-direct NIO-DIRECT-P}] |
---|
1623 | |
---|
1624 | When \code{NIO-DIRECT-P} is non-\code{nil}, constructs a |
---|
1625 | java.nio.Buffer as a ``direct'' buffer. The buffers returned by this |
---|
1626 | method typically have somewhat higher allocation and deallocation |
---|
1627 | costs than non-direct buffers. The contents of direct buffers may |
---|
1628 | reside outside of the normal garbage-collected heap, and so their |
---|
1629 | impact upon the memory footprint of an application might not be |
---|
1630 | obvious. It is therefore recommended that direct buffers be allocated |
---|
1631 | primarily for large, long-lived buffers that are subject to the |
---|
1632 | underlying system's native I/O operations. In general it is best to |
---|
1633 | allocate direct buffers only when they yield a measurable gain in |
---|
1634 | program performance. |
---|
1635 | |
---|
1636 | \end{description} |
---|
1637 | |
---|
1638 | |
---|
1639 | \chapter{Contrib} |
---|
1640 | |
---|
1641 | The \textsc{ABCL} contrib is packaged as a separate jar archive usually named |
---|
1642 | \code{abcl-contrib.jar} or possibly something like |
---|
1643 | \code{abcl-contrib-1.9.2.jar}. The contrib jar is not loaded by the |
---|
1644 | implementation by default, and must be first initialized by the |
---|
1645 | \code{REQUIRE} mechanism before using any specific contrib: |
---|
1646 | |
---|
1647 | \begin{listing-lisp} |
---|
1648 | CL-USER> (require :abcl-contrib) |
---|
1649 | \end{listing-lisp} |
---|
1650 | |
---|
1651 | \section{abcl-asdf} |
---|
1652 | \label{section:abcl-asdf} |
---|
1653 | \index{ABCL-ASDF} |
---|
1654 | |
---|
1655 | This contrib enables an additional syntax for \textsc{ASDF} system |
---|
1656 | definition which dynamically loads \textsc{JVM} artifacts such as jar |
---|
1657 | archives via encapsulation by the Maven build tool. The Maven Aether |
---|
1658 | component can also be directly manipulated by the function associated |
---|
1659 | with the \code{ABCL-ASDF:RESOLVE-DEPENDENCIES} symbol. |
---|
1660 | |
---|
1661 | %ABCL specific contributions to ASDF system definition mainly |
---|
1662 | %concerned with finding JVM artifacts such as jar archives to be |
---|
1663 | %dynamically loaded. |
---|
1664 | |
---|
1665 | |
---|
1666 | When loaded, \textsc{ABCL-ASDF} adds the following objects to |
---|
1667 | \textsc{ASDF}: \code{JAR-FILE}, \code{JAR-DIRECTORY}, |
---|
1668 | \code{CLASS-FILE-DIRECTORY} and \code{MVN}, exporting them (and |
---|
1669 | others) as public symbols. |
---|
1670 | |
---|
1671 | \subsection{Referencing Maven Artifacts via ASDF} |
---|
1672 | |
---|
1673 | Maven artifacts may be referenced within \textsc{ASDF} system |
---|
1674 | definitions, as the following example references the |
---|
1675 | \code{log4j-1.4.9.jar} JVM artifact which provides a widely-used |
---|
1676 | abstraction for handling logging systems: |
---|
1677 | |
---|
1678 | \begin{listing-lisp} |
---|
1679 | ;;;; -*- Mode: LISP -*- |
---|
1680 | (require :asdf) |
---|
1681 | (in-package :cl-user) |
---|
1682 | |
---|
1683 | (asdf:defsystem :log4j |
---|
1684 | :defsystem-depends-on (abcl-asdf) |
---|
1685 | :components ((:mvn "log4j/log4j" :version "1.4.9"))) |
---|
1686 | \end{listing-lisp} |
---|
1687 | |
---|
1688 | \subsection{API} |
---|
1689 | |
---|
1690 | We define an API for \textsc{ABCL-ASDF} as consisting of the following |
---|
1691 | \textsc{ASDF} classes: |
---|
1692 | |
---|
1693 | \code{JAR-DIRECTORY}, \code{JAR-FILE}, and |
---|
1694 | \code{CLASS-FILE-DIRECTORY} for JVM artifacts that have a currently |
---|
1695 | valid pathname representation. |
---|
1696 | |
---|
1697 | Both the \code{MVN} and \code{IRI} classes descend from |
---|
1698 | \code{ASDF-COMPONENT}, but do not directly have a file-system location. |
---|
1699 | |
---|
1700 | For use outside of ASDF system definitions, we currently define one |
---|
1701 | method, \code{ABCL-ASDF:RESOLVE-DEPENDENCIES} which locates, |
---|
1702 | downloads, caches, and then loads into the currently executing JVM |
---|
1703 | process all recursive dependencies annotated in the Maven |
---|
1704 | \code{pom.xml} graph. |
---|
1705 | |
---|
1706 | \subsection{Directly Instructing Maven to Download JVM Artifacts} |
---|
1707 | |
---|
1708 | Bypassing \textsc{ASDF}, one can directly issue requests for the Maven |
---|
1709 | artifacts to be downloaded |
---|
1710 | |
---|
1711 | \begin{listing-lisp} |
---|
1712 | CL-USER> (abcl-asdf:resolve-dependencies "com.google.gwt" |
---|
1713 | "gwt-user") |
---|
1714 | WARNING: Using LATEST for unspecified version. |
---|
1715 | "/Users/evenson/.m2/repository/com/google/gwt/gwt-user/2.9.0/gwt-user-2.9 |
---|
1716 | .0.jar:/Users/evenson/.m2/repository/com/google/jsinterop/jsinterop-annot |
---|
1717 | ations/2.0.0/jsinterop-annotations-2.0.0.jar:/Users/evenson/.m2/repositor |
---|
1718 | y/javax/validation/validation-api/1.0.0.GA/validation-api-1.0.0.GA.jar:/U |
---|
1719 | sers/evenson/.m2/repository/javax/validation/validation-api/1.0.0.GA/vali |
---|
1720 | dation-api-1.0.0.GA-sources.jar:/Users/evenson/.m2/repository/javax/servl |
---|
1721 | et/javax.servlet-api/3.1.0/javax.servlet-api-3.1.0.jar:/Users/evenson/.m2 |
---|
1722 | /repository/org/w3c/css/sac/1.3/sac-1.3.jar" |
---|
1723 | \end{listing-lisp} |
---|
1724 | |
---|
1725 | To actually load the dependency into the current process, use the |
---|
1726 | \code{JAVA:ADD-TO-CLASSPATH} generic function: |
---|
1727 | |
---|
1728 | \begin{listing-lisp} |
---|
1729 | CL-USER> (java:add-to-classpath |
---|
1730 | (abcl-asdf:resolve-dependencies "com.google.gwt" |
---|
1731 | "gwt-user")) |
---|
1732 | \end{listing-lisp} |
---|
1733 | |
---|
1734 | Notice that all recursive dependencies have been located and installed |
---|
1735 | locally from the network as well. |
---|
1736 | |
---|
1737 | More extensive documentations and examples can be found at |
---|
1738 | \url{http://abcl.org/svn/tags/1.9.2/contrib/abcl-asdf/README.markdown}. |
---|
1739 | |
---|
1740 | \section{asdf-jar} |
---|
1741 | \label{section:asdf-jar} |
---|
1742 | \index{ASDF-JAR} |
---|
1743 | |
---|
1744 | The asdf-jar contrib provides a system for packaging \textsc{ASDF} |
---|
1745 | systems into jar archives for \textsc{ABCL}. Given a running |
---|
1746 | \textsc{ABCL} image with loadable \textsc{ASDF} systems the code in |
---|
1747 | this package will recursively package all the required source and |
---|
1748 | fasls in a jar archive. |
---|
1749 | |
---|
1750 | The documentation for this contrib can be found at |
---|
1751 | \url{http://abcl.org/svn/tags/1.9.2/contrib/asdf-jar/README.markdown}. |
---|
1752 | |
---|
1753 | \section{jss} |
---|
1754 | \label{section:jss} |
---|
1755 | \index{JSS} |
---|
1756 | |
---|
1757 | To one used to the more universal syntax of s-expr pairs upon which |
---|
1758 | the definition of read and compile time macros is quite |
---|
1759 | natural \footnote{See Graham's ``On Lisp'' |
---|
1760 | http://lib.store.yahoo.net/lib/paulgraham/onlisp.pdf.}, the syntax |
---|
1761 | available to the \textsc{Java} programmer may be said to suck. To |
---|
1762 | alleviate this situation, the \textsc{JSS} contrib introduces the |
---|
1763 | \code{SHARPSIGN-DOUBLE-QUOTE} (\code{\#"}) reader macro, which allows |
---|
1764 | the the specification of the name of invoking function as the first |
---|
1765 | element of the relevant s-expr which tends to be more congruent to how |
---|
1766 | Lisp programmers seem to be wired to think. |
---|
1767 | |
---|
1768 | While quite useful, we don't expect that the \textsc{JSS} contrib will |
---|
1769 | be the last experiment in wrangling \textsc{Java} from \textsc{Common |
---|
1770 | Lisp}. |
---|
1771 | |
---|
1772 | \subsection{JSS usage} |
---|
1773 | |
---|
1774 | An example of using \textsc{JSS} to enumerate the \textsc{Java} |
---|
1775 | runtime system properties: |
---|
1776 | |
---|
1777 | \begin{listing-lisp} |
---|
1778 | CL-USER> (require :abcl-contrib) |
---|
1779 | ==> ("ABCL-CONTRIB") |
---|
1780 | CL-USER> (require :jss) |
---|
1781 | ==> ("JSS") |
---|
1782 | CL-USER) (#"getProperties" 'java.lang.System) |
---|
1783 | ==> #<java.util.Properties {java.runtime.name=Java.... {2FA21ACF}> |
---|
1784 | CL-USER) (#"propertyNames" (#"getProperties" 'java.lang.System)) |
---|
1785 | ==> #<java.util.Hashtable$Enumerator java.util.Has.... {36B4361A}> |
---|
1786 | \end{listing-lisp} %$ <-- un-confuse Emacs font-lock |
---|
1787 | |
---|
1788 | Some more information on jss can be found in its documentation at |
---|
1789 | \url{http://abcl.org/svn/tags/1.9.2/contrib/jss/README.markdown} |
---|
1790 | |
---|
1791 | \section{jfli} |
---|
1792 | \label{section:jfli} |
---|
1793 | |
---|
1794 | The contrib contains a pure-Java version of \textsc{JFLI}, apparently |
---|
1795 | a descendant of Rich Hickey's early experimentations with using Java |
---|
1796 | from Common Lisp. |
---|
1797 | |
---|
1798 | \url{http://abcl.org/svn/tags/1.9.2/contrib/jfli/README}. |
---|
1799 | |
---|
1800 | \section{abcl-introspect} |
---|
1801 | \label{section:abcl-introspect} |
---|
1802 | \index{ABCL-INTROSPECT} |
---|
1803 | |
---|
1804 | \textsc{ABCL-INTROSPECT} offers more extensive functionality for |
---|
1805 | inspecting the state of the implementation, most notably in |
---|
1806 | integration with \textsc{SLIME}, where the backtrace mechanism is |
---|
1807 | augmented to the point that local variables are inspectable. |
---|
1808 | |
---|
1809 | A compiled function is an instance of a class, which has multiple |
---|
1810 | instances if it represents a closure, or a single instance if it |
---|
1811 | represents a non-closed-over function. |
---|
1812 | |
---|
1813 | The \textsc{ABCL} compiler stores constants that are used in function |
---|
1814 | execution as private java fields. This includes symbols used to invoke |
---|
1815 | function, locally-defined functions (such as via \code{LABEL} or |
---|
1816 | \code{flet}) and string and other literal objects. |
---|
1817 | \textsc{ABCL-INTROSPECT} implements a ``do what I mean'' API for |
---|
1818 | introspecting these constants. |
---|
1819 | |
---|
1820 | \textsc{ABCL-INTROSPECT} provides access to those internal values, and |
---|
1821 | uses them in at least two ways. First, to annotate locally defined |
---|
1822 | functions with the top-level function they are defined within, and |
---|
1823 | second to search for callers of a given function \footnote{ Since \textsc{Java} |
---|
1824 | functions are strings, local fields also have these strings. In the |
---|
1825 | context of looking for callers of a function you can also give a |
---|
1826 | string that names a java method. Same caveat re: false positives.} |
---|
1827 | . This may yield some false positives, such as when a symbol that |
---|
1828 | names a function is also used for some other purpose. It can also have |
---|
1829 | false negatives, as when a function is inlined. Still, it's pretty |
---|
1830 | useful. The second use to to find source locations for frames in the |
---|
1831 | debugger. If the source location for a local function is asked for the |
---|
1832 | location of its 'owner' is instead returns. |
---|
1833 | |
---|
1834 | In order to record information about local functions, \textsc{ABCL} |
---|
1835 | defines a function-plist, which is for the most part unused, but is |
---|
1836 | used here with set of keys indicating where the local function was |
---|
1837 | defined and in what manner, i.e. as normal local function, as a method |
---|
1838 | function, or as an initarg function. There may be other places |
---|
1839 | functions are stashed away (defstructs come to mind) and this file |
---|
1840 | should be added to to take them into account as they are discovered. |
---|
1841 | |
---|
1842 | \textsc{ABCL-INTROSPECT} does not depend on \textsc{JSS}, but provides |
---|
1843 | a bit of jss-specific functionality if \textsc{JSS} *is* loaded. |
---|
1844 | |
---|
1845 | \subsection{Implementations for CL:DISASSEMBLE} |
---|
1846 | \label{abcl-introspect-disassemblers} |
---|
1847 | \index{CL:DISASSEMBLE} |
---|
1848 | |
---|
1849 | The following \textsc{ASDF} systems packages various external tools that may be |
---|
1850 | selected by the \code{SYS:CHOOSE-DISASSEMBLER} interface: |
---|
1851 | |
---|
1852 | \begin{enumerate} |
---|
1853 | \item \code{objectweb} |
---|
1854 | \item \code{jad} |
---|
1855 | \item \code{javap} |
---|
1856 | \item \code{fernweb} |
---|
1857 | \item \code{cfr} |
---|
1858 | \item \code{procyon} |
---|
1859 | \end{enumerate} |
---|
1860 | |
---|
1861 | To use one of these tools, first load the system via \textsc{ASDF} |
---|
1862 | (and/or \textsc{Quicklisp}), then use the |
---|
1863 | \code{SYS:CHOOSE-DISASSEMBLER} function to select the keyword that |
---|
1864 | appears in \code{SYS:*DISASSEMBLERS*}. |
---|
1865 | \begin{listing-lisp} |
---|
1866 | CL-USER> (require :abcl-contrib)(asdf:load-system :objectweb) |
---|
1867 | CL-USER> sys:*disassemblers* |
---|
1868 | ((:OBJECTWEB |
---|
1869 | . ABCL-INTROSPECT/JVM/TOOLS/OBJECTWEB:DISASSEMBLE-CLASS-BYTES) |
---|
1870 | (:SYSTEM-JAVAP . SYSTEM:DISASSEMBLE-CLASS-BYTES)) |
---|
1871 | CL-USER> (sys:choose-disassembler :objectweb) |
---|
1872 | ABCL-INTROSPECT/JVM/TOOLS/OBJECTWEB:DISASSEMBLE-CLASS-BYTES |
---|
1873 | CL-USER> (disassemble 'cons) |
---|
1874 | ; // class version 52.0 (52) |
---|
1875 | ; // access flags 0x30 |
---|
1876 | ; final class org/armedbear/lisp/Primitives$pf_cons extends org/armedbear/lisp/Primitive { |
---|
1877 | ; |
---|
1878 | ; // access flags 0x1A |
---|
1879 | ; private final static INNERCLASS org/armedbear/lisp/Primitives$pf_cons org/armedbear/lisp/Primitives pf_cons |
---|
1880 | ; |
---|
1881 | ; // access flags 0x0 |
---|
1882 | ; <init>()V |
---|
1883 | ; ALOAD 0 |
---|
1884 | ; GETSTATIC org/armedbear/lisp/Symbol.CONS : Lorg/armedbear/lisp/Symbol; |
---|
1885 | ; LDC "object-1 object-2" |
---|
1886 | ; INVOKESPECIAL org/armedbear/lisp/Primitive.<init> (Lorg/armedbear/lisp/Symbol;Ljava/lang/String;)V |
---|
1887 | ; RETURN |
---|
1888 | ; MAXSTACK = 3 |
---|
1889 | ; MAXLOCALS = 1 |
---|
1890 | ; |
---|
1891 | ; // access flags 0x1 |
---|
1892 | ; public execute(Lorg/armedbear/lisp/LispObject;Lorg/armedbear/lisp/LispObject;)Lorg/armedbear/lisp/LispObject; |
---|
1893 | ; NEW org/armedbear/lisp/Cons |
---|
1894 | ; DUP |
---|
1895 | ; ALOAD 1 |
---|
1896 | ; ALOAD 2 |
---|
1897 | ; INVOKESPECIAL org/armedbear/lisp/Cons.<init> (Lorg/armedbear/lisp/LispObject;Lorg/armedbear/lisp/LispObject;)V |
---|
1898 | ; ARETURN |
---|
1899 | ; MAXSTACK = 4 |
---|
1900 | ; MAXLOCALS = 3 |
---|
1901 | ; } |
---|
1902 | NIL |
---|
1903 | \end{listing-lisp} |
---|
1904 | |
---|
1905 | |
---|
1906 | \url{http://abcl.org/svn/tags/1.9.2/contrib/abcl-introspect/}. |
---|
1907 | |
---|
1908 | \section{abcl-build} |
---|
1909 | \label{section:abcl-build} |
---|
1910 | \index{ABCL-BUILD} |
---|
1911 | |
---|
1912 | |
---|
1913 | \textsc{ABCL-BUILD} constitutes a new implementation for the original |
---|
1914 | Lisp-hosted \textsc{ABCL} build system API in the package |
---|
1915 | \code{ABCL-BUILD} that uses the same build artifacts as all of the |
---|
1916 | other current builds. |
---|
1917 | |
---|
1918 | \subsection{ABCL-BUILD Utilities} |
---|
1919 | |
---|
1920 | \textsc{ABCL-BUILD} consolidates various utilities that are useful |
---|
1921 | for system construction, namely |
---|
1922 | |
---|
1923 | \begin{itemize} |
---|
1924 | |
---|
1925 | \item The ability to introspect the invocation of given executable in |
---|
1926 | the current implementation process PATH. |
---|
1927 | |
---|
1928 | \item Downloading and unpackaging selected JVM artifacts, namely the |
---|
1929 | Ant and Maven build tools. The \code{ABCL-BUILD:WITH-ANT} and |
---|
1930 | \code{ABCL-BUILD:WITH-MVN} macros abstracts this installation |
---|
1931 | procedure conveniently away from the User. |
---|
1932 | |
---|
1933 | \item The beginnings of a generic framework to download arbitrary |
---|
1934 | archives from the network. |
---|
1935 | \end{itemize} |
---|
1936 | |
---|
1937 | \url{http://abcl.org/svn/tags/1.9.2/contrib/abcl-build/}. |
---|
1938 | |
---|
1939 | \section{named-readtables} |
---|
1940 | \label{section:named-readtables} |
---|
1941 | \index{NAMED-READTABLES} |
---|
1942 | |
---|
1943 | \code{NAMED-READTABLES} is a library that provides a namespace for |
---|
1944 | readtables akin to the already-existing namespace of packages. |
---|
1945 | |
---|
1946 | This contrib was included from the source available from |
---|
1947 | \url{https://github.com/melisgl/named-readtables/}. |
---|
1948 | |
---|
1949 | See \url{http://abcl.org/svn/tags/1.9.2/contrib/named-readtables/} for |
---|
1950 | more information. |
---|
1951 | |
---|
1952 | \chapter{History} |
---|
1953 | \index{History} |
---|
1954 | |
---|
1955 | \textsc{ABCL} was originally the extension language for the J editor, which was |
---|
1956 | started in 1998 by Peter Graves. Sometime in 2003, a whole lot of |
---|
1957 | code that had previously not been released publicly was suddenly |
---|
1958 | committed that enabled ABCL to be plausibly termed an emergent ANSI |
---|
1959 | Common Lisp implementation candidate. |
---|
1960 | |
---|
1961 | From 2006 to 2008, Peter manned the development lists, incorporating |
---|
1962 | patches as made sense. After a suitable search, Peter nominated Erik |
---|
1963 | H\"{u}lsmann to take over the project. |
---|
1964 | |
---|
1965 | In 2008, the implementation was transferred to the current |
---|
1966 | maintainers, who have striven to improve its usability as a |
---|
1967 | contemporary Common Lisp implementation. |
---|
1968 | |
---|
1969 | On October 22, 2011, with the publication of this Manual explicitly |
---|
1970 | stating the conformance of Armed Bear Common Lisp to \textsc{ANSI}, we |
---|
1971 | released abcl-1.0.0. We released abcl-1.0.1 as a maintenance release |
---|
1972 | on January 10, 2012. |
---|
1973 | |
---|
1974 | In December 2012, we revised the implementation by adding |
---|
1975 | \textsc{(A)MOP} with the release of abcl-1.1.0. We released |
---|
1976 | abcl-1.1.1 as a maintenance release on February 14, 2013. |
---|
1977 | |
---|
1978 | At the beginning of June 2013, we enhanced the stability of the |
---|
1979 | implementation with the release of abcl-1.2.1. |
---|
1980 | |
---|
1981 | In March 2014, we introduced the Fourth Edition of the implementation |
---|
1982 | with abcl-1.3.0. At the end of April 2014, we released abcl-1.3.1 as |
---|
1983 | a maintenance release. |
---|
1984 | |
---|
1985 | In October 2016 we blessed the current \textsc{svn} trunk |
---|
1986 | \url{http://abcl.org/svn/trunk/} as 1.4.0, which includes the |
---|
1987 | community contributions from Vihbu, Olof, Pipping, and Cyrus. We |
---|
1988 | gingerly stepped into current century by establishing \textsc{git} |
---|
1989 | bridges to the source repositories available via the URIs |
---|
1990 | \url{https://github.com/armedbear/abcl/} and |
---|
1991 | \url{https://gitlab.common-lisp.net/abcl/abcl/} so that pull requests |
---|
1992 | for enhancements to the implementation many be more easily |
---|
1993 | facilitated. |
---|
1994 | |
---|
1995 | In June 2017, we released ABCL 1.5.0 which dropped support for running |
---|
1996 | upon Java 5. |
---|
1997 | |
---|
1998 | Against the falling canvas of 2019 we released ABCL 1.6.0 which |
---|
1999 | provided compatibility with Java 11 while skipping Java 9 and 10. In |
---|
2000 | April 2020, we offered abcl-1.6.1 as a maintenance release for usage |
---|
2001 | around ELS2020. |
---|
2002 | |
---|
2003 | With the overhaul the implementation of arrays specialized on |
---|
2004 | \code{(or (unsigned-byte 8) (unsigned-byte 16) (unsigned-byte 32))} to |
---|
2005 | using \code{java.nio.Buffer} objects, we deemed the implementation |
---|
2006 | worthy to bless with release as abcl-1.7.0 in June 2020. We released |
---|
2007 | abcl-1.7.1 as a maintenance release in July 2020. |
---|
2008 | |
---|
2009 | We released abcl-1.8.0 under the darkening storms of October 2020. |
---|
2010 | |
---|
2011 | Halfway through the $\pi$ $\alpha$ $\nu$ $\delta$ $\eta$ $\mu$ o |
---|
2012 | $\zeta$ \cite{pandemos}, we dyslexic worker bears untied abcl-1.9.0. |
---|
2013 | We released abcl-1.9.1 as a maintenance release in February 2023. In |
---|
2014 | June 2023, among other fixes, we substantially improved our GRAY-STREAM |
---|
2015 | support in abcl-1.9.2. |
---|
2016 | |
---|
2017 | \appendix |
---|
2018 | |
---|
2019 | \chapter{The MOP Dictionary} |
---|
2020 | |
---|
2021 | \include{mop} |
---|
2022 | |
---|
2023 | \chapter{The SYSTEM Dictionary} |
---|
2024 | |
---|
2025 | The public interfaces in this package are subject to change with |
---|
2026 | \textsc{ABCL} 2.0 |
---|
2027 | |
---|
2028 | \include{system} |
---|
2029 | |
---|
2030 | \chapter{The JSS Dictionary} |
---|
2031 | |
---|
2032 | These public interfaces are provided by the JSS contrib. |
---|
2033 | |
---|
2034 | \include{jss} |
---|
2035 | |
---|
2036 | \bibliography{abcl} |
---|
2037 | \bibliographystyle{alpha} |
---|
2038 | |
---|
2039 | \printindex |
---|
2040 | |
---|
2041 | \end{document} |
---|